(2)由等效电路图2(b)及式(2)可以看出L1(L2)在电路中实质上起到了桥臂换向中的换向交流电感作用,因此它也存在占空比丢失问题[4]。
(3)由于L1(L2)的开通电流与续流电流的等效回路参数基本相同,当NLN3=NLN1=NLN2时,极易造成初级S1(S2)电流为锯齿波电流,它加大了开关器件的电流应力。虽然可以通过改变(NLN1/NP)的比值来改变续流时间△t,但不是理想办法。如何构造一个可控的电感L1(L2)是该电路进一步改进的方法。
4、仿真结果
为了检验本文提出的电感分裂式推挽换向软开关电路的工作状况,运用PSPICE电子线路仿真软件进行了仿真。
仿真所用电参数为:
电感L1=L2=0.1mH,电容C5=C6=0.6μF,负载R=10Ω。
图3 相关的电压、电流和驱动波形
图3给出了仿真时开关管的电压、电流及S2的驱动波形。图4给出了开关管的功率损耗波形及输出平均功率波形。
由图3(d)可以看出开关管的电压为零时,开关管才开通,即零电压开通,此时如图3(b)所示开关管电流为零,图3(c)为变压器次级电感LN3的电压波形,图3(a)为电感L1、L2的电流波形,可以看出电感电流在换向期间,变压器次级电压的变化情况。
图4为开关管的功耗分析,从图4(a)及(b)可以看出,当开关管开通时,开关管功耗为零,计算图4(a)及(b)的功耗,其开关管的功耗很小,可见其效率很高。
图4 开关管功耗与负载功率
5、结论
本文提出的这种电感分裂式推挽换向软开关技术,具有其优点,特别适用于中、低功率场合,但由于存在占空比丢失现象,如何形成可控电感L1(L2),有待于进一步研究。