您好,欢迎光临!   请登录 免费注册    
  您的位置:电子变压器资讯网 > 资讯中心 >  技术文章 > 正文
RCC变压器设计及其与反激电路的对比
[发布时间]:2012年7月30日 [来源]:电子发烧友 [点击率]:3198
【导读】: RCC 电路根据功率管不同,分为两种,一种是用三极管制作,另一种是用 MOS 管制做,电路稍有不同,但原理差不太多。我们知道,三极管是一个电流控制的电流源,即若其基极电流为 Ib则其极电极电流即为...

RCC 电路根据功率管不同,分为两种,一种是用三极管制作,另一种是用 MOS 管制做,电路稍有不同,但原理差不太多。我们知道,三极管是一个电流控制的电流源,即若其基极电流为 Ib,则其极电极电流即为此 IB 值乘以一个放大倍数。而 MOS 属电压控制型电流源,即允许流过的最大集电极电流是由 GS 极的电压值决定的,相应的,三极管做成的 RCC电路即是通过控制其基极电流来控制最大集电极电流,即原边峰值电流,来调节输出能量大小,即调节输出电压,而 MOS 管是通过调节 GS 极之间的电压,来控制其原边峰值电流。

   

请看上图,是一个典型的用 MOS 管做的 RCC 电路。下面我根据自己的理解来分析一下此电路的工作过程。

1.启动。当开启电源后,高压通过 RST,经过 MOS 的 GS 极,再经过 RS,注入基极电流,因为 MOS 的 GS 极之间,有结电容,因此 GS 极电压升高,GS 导通,RS 的上侧会对地产生一个电压,此电压通过 RF,给 Q1 基极注入电流。因 MOS正在导通中,所以 NS2 的同名端感兴出一个正电压来,这个电压通过 RL2,D2,RZCD,CZCD,再到 Q1 极电极,因 RS 给 Q1 已经注入基极电流,Q1 导通,

2.将 VG 电压拉下,MOS 关闭。MOS 关闭,电压反激, NS2 同名端电压被拉到 0,即为地电压,因 RCD 上端为地电压,所以此时 Q1 的极电极电压为负,便快速的给 MOS 的 GS 极的结电容放电。加速了 MOS 的关闭。同时反激能量通过 NS1,传给负载,于是次级建立起输出电压,次级控制电路亦开始起作用。当变压器储存能量放完后,NS2 两端电压消失,CO2 已经储能,其上端会有一个电压,此电压通过 NS2 绕组,RZCD,CZCD,Q1 集电极,使得 Q1 上电压上升,即又给 GS 加上一个电压。于是又开始起振。

3、以上便是 RCC 电路的启动过程,再说一下其稳压过程,在一定的输入电压下,一定的输出负载下,其光耦电流应该是一个恒定值,光敏三极管的上端是由电容 CO2 维持的一个恒定电压,此电压通过光敏三极管,RA,给 Q1 基极注入电流。Q1 的基极电流,决定了流过其极电极的电流。假如输入电压不变,MOS 在导通时候,RCD 上端(即NS2 同名端-),此时此点电压值为 VIN.NS2/NP+C02,只要输入电压值不变,导通时此点电压值即是这么多,不会变.而 Q1 上端的电压,是由流过 Q1 的电流决定,其电压等于 RCD 上端电压,减去 RL2,RCD,D2,RZCD,CZCD 的压降,当副边的负载变轻时候,流过光耦电流变大,即注入基极电流变大,极电极电流变大,以上四个元件的压降也变大,所以 Q1 是的电压变小,于是原边峰值电流变上,减小能量输入,达到电压稳定.当原边输入电压升高的时候,NS2 同名端电压升高,此时若光耦电流不变,则 Q1 的电压会上升,能量会增加,输出电压升高,此时光耦电流就会变大,进而形成一系列自动调节.从而调节原边峰值电流,使输出电压保持稳定.

通过以上分析,我们不难看出 RCC 电路与反激电路的区别,我归结如下.

1.RCC电路的频率是变化的,面反激电路的频率是固定的,当负载变重时,RCC 电路的频率变小,周期变长.

2.RCC 电路,始终工作在临界导通模式,其不会出现反激式电流的连续模式,即其原边电流始终都是一个三角波形,而不会出现梯形波,即其原边电流的波形如

  

3、RCC 电路调节电压输入的方式,就是通过控制原边的峰值电流来实现的,而不是占空比,其占空比是由原边输入电压和输出电压而定。 好了,了解了以上原理,我们就可以来设计这款 RCC 电源变压器。

设计一款 RCC 变压器,首先要知道的有 1.输入电压,比方说,宽电压 90V 至 264V 交流.2.输出规格,比方说 12V1A,3.所选的磁芯的横截面积.在此我选用了 EF20 磁芯,面积为 30 平方毫米.有了以上条件,根据以上电路,我即来设计此款 RCC 电路变压器.

1. 根据输入条件,确定输入最低直流电压,因为输入最低的交流电压是 90V,经过整流滤波,再考虑其电压波动,我还是可取输入最低直流电压 VIN 为 90V.

[上一页] [1] [2] [下一页]

投稿箱:
   电子变压器、电感器、磁性材料等磁电元件相关的行业、企业新闻稿件需要发表,或进行资讯合作,欢迎联系本网编辑部QQ: , 邮箱:info%ett-cn.com (%替换成@)。
第一时间获取电子变压行业资讯,请在微信公众账号中搜索“电子变压器资讯”或者“dzbyqzj”,或用手机扫描左方二维码,即可获得电子变压器资讯网每日精华内容推送和最优搜索体验,并参与活动!
温馨提示:回复“1”获取最新资讯。