芯片战争未曾停歇。飞速发展的自动驾驶为芯片厂商带来了新的机会,IC设计商尝试推出更适用于AI场景的芯片,晶圆与封测厂商图加速换代生产线,以便赶上下一波AI时代的“潮流”。为了更直观的理解AI芯片,我们需要“拆解”两部iPhone。
揭开iPhone 4后盖,卸下主板PCB,可以看到一块拇指大小黑色塑料片。这是苹果第一代自家产的SoC(片上系统),名为A4处理器,它被焊接在iPhone 4主板背部,曾与乔帮主一同站在2010发布会舞台上。如今苹果自产SoC升级到了A12X,除了运算能力的增长,其内核架构也随着工业界芯片制造工艺进化而日趋精湛。
8年前的A4处理器撑起了iPhone的市场地位,这块搭载ARM核心、内部脉冲震荡可以飙升至1GHZ的芯片,仅一半的计算能力就可把上个世纪登月的阿波罗飞船甩在几条街后,而大部分用户只需用它打电话、收发邮件、偶尔玩一玩《愤怒的小鸟》。A系芯片演进到今天,苹果推出搭载最新处理器A12x的iPad Pro,库克试图说服人们一款不足6毫米厚度的电子设备就可胜任生活工作的全部需求,从而不在需要携带厚重的笔记本,确实有他的道理。
A12X代表着消费电子处理器已到达前所未有的高度。这款A12X内置模拟人脑神经元的集成电路,可以在人眼不可察觉的瞬间完成神经引擎、图像处理、数据处理的工作(FaceID),这在几年前还是科幻电影的元素。
我们没有办法展示A12X的照片,但可以参照A11,视觉化苹果移动端SoC集成度变化。
今天再来对比两款芯片:两张单薄晶体板下方隐藏着一道巨大的技术鸿沟,从硅晶打磨、光刻、再到封装技术,背后是多年来理论学者与芯片工程师的尝试,以及全球芯片巨头间的角逐结果。如果不是制造工艺的进步、整个芯片的社会生产力不断提升,谁也不会想到会有类似科幻元素的产品触达我们的生活,影响到我们的感官体验。
国内华为也有自己的SoC系统:麒麟980。为证明最新麒麟980的实力,华为号召了几位大学生,设计出一套可以预装在荣耀Magic2上便可操纵车辆的驾驶程序,佐证了麒麟980计算能力。
这是一次创新式的尝试,但手机能够处理的道路信息还是非常有限,为了提供安全可靠的自动驾驶体验,我们需要更快、更灵活、更低功耗的的AI芯片。
在未来,无人驾驶汽车将集成诸多算法。想象一下,用户可以在手机App上“召唤”一辆附近空闲的无人车。无人车启动“大脑”,开始获得实时路况信息,这几乎占用了目前无人车“大脑”的运算带宽。每一秒钟,摄像头采集车附近360度视野图像,实时地运行卷积神经网络来区分行人与车辆。
与此同时,毫米波雷达收集到距离信息为车载决策层准确的判断依据:是继续直线行驶,还是转向避让?决策层需要在不到50毫秒的时间内反应,控制车辆动力及转向控制器,下位机继而将指令转化成PWM脉冲信号,指挥毫无思考能力的方向电机和动力电机。
几分钟后,无人车战胜了复杂的路况、穿过嘈杂街道,停靠在到精准的目标位置,等待乘客上车。随后,通过车载语音交互模块,无人车可获知用户的目的地。根据最新的高精度地图信息,再结合车身上的全方位传感器感知周遭情况,最终安全的抵达目的地。这一套流程,重复而单一,会使人类司机感到疲惫。
所以不难看出,AI芯片有三大要求:大吞吐,低延时,低能耗。对于厂商来讲,只要能占据更大的无人驾驶市场,钱不是问题。
为实现这一目标,Nvidia在2016年推出K字头运算GPU加速器,黄仁勋试图讨好马斯克以便挤掉以色列公司Mobileye,但显然后者不吃这一套,选择表面合作暗地却从AMD挖高管,打算自己搞AI芯片。只不过事实证明,最新的Model 3依然使用Nvidia的处理器,自研芯片之路还很长。
目前在业界中,有一种说法是AI芯片将沿「CPU-GPU-FPGA-ASIC」的路线演进。CPU曾在PC、服务器端时代统领江山,却不及GPU的大吞吐特性而沦为辅助,Nvidia曾在Drive Xavier架构上投入30亿美元,2018年CES上展示出了一款能够以500瓦的能耗代价实现每秒320万亿次运算。500瓦的能耗水平非常低,满载的车内空调大约在5千瓦时左右,占用传统燃油车2匹马力。