对于ISM-RF设计中,电路板上布局长度为12.7mm (0.5in)的引线,可产生大约0.5pF和9.3nH的寄生参数。这一等级的寄生参数对于接收器谐振槽路的影响(LC乘积的变化),可能产生315MHz ±2%或433.92MHz ±3.5%的变化。由于引线寄生效应所产生的附加电容和电感,使得315MHz振荡频率的峰值达到312.17MHz,433.92MHz振荡频率的峰值达到426.61MHz。
另外一个例子是Maxim的超外差接收机(MAX7042)的谐振槽路,推荐使用的元件在315MHz时为1.2pF和30nH;433.92MHz时为0pF和16nH。利用方程计算谐振电路振荡频率:
评估板谐振电路应包括封装和布局的寄生效应,计算315MHz谐振频率时,寄生参数分别为7.3pF和7.5pF。注意,LC乘积表现为集总电容。
综上所述,布板须遵循以下原则:
保持引线长度尽可能短。
关键电路尽量靠近器件放置。
根据实际布局寄生效应对关键元件进行补偿。
平面走线电感
不建议使用平面走线或PCB螺旋电感,典型PCB制造工艺具有一定的不精确性,例如宽度、空间容差,从而对元件值精度影响非常大。因此,大多数受控和高Q值电感均为绕线式。其次,可以选择多层陶瓷电感,多层片式电容厂商也提供这种产品。尽管如此,有些设计者还是在不得已的情况下选择了螺线电感。计算平面螺旋电感的标准公式通常采用惠勒公式10:
式中,a为线圈的平均半径,单位为英寸;n为匝数;c为线圈磁芯的宽度(rOUTER - rINNER),单位为英寸。当线圈的c 》 0.2a时11,该计算方法的精度在5%之内。
可以使用方形、六角形或其它形状的单层螺旋电感。可以找到非常好的近似方法,对集成电路晶圆上的平面电感进行建模。为了达到这一目的,对标准惠勒公式进行修改,得到非常适合小尺寸及方形规格的平面电感估算方法12。
式中,ρ为充填比:;n为匝数,dAVG为平均直径:。对于方形螺旋,K1 = 2.36,K2 = 2.75。13
避免使用这种电感的原因有很多,它们通常受空间限制而导致电感值减小。避免使用平面电感的主要原因是受限制的几何尺寸,以及对临界尺寸的控制较差,从而无法预测电感值。此外,PCB生产过程中很难控制实际电感值,电感还会将噪声耦合到电路的其它部分的趋向(参见上文中的引线耦合部分)。
总而言之,应该:
避免使用平面走线电感。
尽量使用绕线片式电感。
总结
如上所述,几种常见的PCB布局陷阱会造成ISM-RF设计问题。然而,注意电路的非理想特性,您完全可避免这些缺陷。补偿这些不希望的影响需要适当处理表面上无关紧要的事项,例如元件方向、走线长度、过孔布置,以及接地区域的用法。遵守以上的指导原则,您可明显节省浪费在修正错误方面的时间和金钱。
(敬请关注微信号:dzbyqzx)