您好,欢迎光临!   请登录 免费注册    
  您的位置:电子变压器资讯网 > 资讯中心 >  专题报道 > 正文
PCB布局中电感的排列方向
[发布时间]:2017年3月3日 [来源]:电子发烧友 [点击率]:3672
【导读】: 工业、科学和医疗射频(ISM-RF)产品的无数应用案例表明,这些产品的印制板(PCB)布局很容易出现各种缺陷。人们时常发现相同IC安装到两块不同电路板上,所表现的性能指标会有显著差异。工作条件、谐...

  过孔电容主要源于过孔焊盘侧的覆铜与地层覆铜之间构成的电容,它们之间由一个相当小的圆环隔开。另外一个影响源于金属过孔本身的圆柱。寄生电容的影响一般较小,通常只会造成高速数字信号的边沿变差(本文不对此加以讨论)。

  过孔的最大影响是相应的互联方式所引起的寄生电感。因为RF PCB设计中,大多数金属过孔尺寸与集总元件的尺寸相同,可利用简单的公式估算电路过孔的影响:

  式中,LVIA为过孔的集总电感;h为过孔高度,单位为英寸;d为过孔直径,单位为英寸2。

  寄生电感往往对旁路电容的连接影响很大。理想的旁路电容在电源层与地层之间提供高频短路,但是,非理想过孔则会影响地层和电源层之间的低感通路。典型的 PCB过孔(d = 10 mil、h = 62.5 mil)大约等效于一个1.34nH电感。给定ISM-RF产品的特定工作频率,过孔会对敏感电路(例如,谐振槽路、滤波器以及匹配网络等)造成不良影响。

  如果敏感电路共用过孔,例如π型网络的两个臂,则会产生其它问题。例如,放置一个等效于集总电感的理想过孔,等效原理图则与原电路设计有很大区别。与共用电流通路的串扰一样3,导致互感增大,加大串扰和馈通。

  综上所述,电路布局需要遵循以下原则:

  确保对敏感区域的过孔电感建模。

  滤波器或匹配网络采用独立过孔。

  注意,较薄的PCB覆铜会降低过孔寄生电感的影响。

  引线长度

  Maxim ISM-RF产品的数据资料往往建议使用尽可能短的高频输入、输出引线,从而将损耗和辐射降至最小。另一方面,这种损耗通常是由于非理想寄生参数引起的,所以寄生电感和电容都会影响电路布局,使用尽可能短的引线有助于降低寄生参数。通常情况下,10 mil宽、距离地层0.0625in的PCB引线,如果采用的是FR4电路板,则产生大约19nH/in的电感和大约1pF/in的分布电容。对于具有 20nH电感、3pF电容的LAN/混频器电路,电路、元器件布局非常紧凑时,会对有效元件值造成很大影响。

  “Institute for Printed Circuits”中的IPC-D-317A4提供了一个行业标准方程,用于估算微带线PCB的各种阻抗参数。该文件在2003年被IPC-2251取代5,后者为各种PCB引线提供更准确的计算方法。可以通过各种渠道获得在线计算器,其中大多数都基于IPC-2251提供的方程式。密苏里理工大学的电磁兼容性实验室提供了一个非常实用的PCB引线阻抗计算方法6。

  公认的计算微带线阻抗的标准是:

  式中,εr为电介质的介电常数,h为引线距离地层的高度,w为引线宽度,t为引线厚度。w/h介于0.1至2.0、εr介于1至15之间时,该公式的计算结果相当准确7。

  为评估引线长度的影响,确定引线寄生参数对理想电路的去谐效应更实用。本例中,我们讨论杂散电容和电感。用于微带线的特征电容标准方程为:

  同理,可利用上述方程从方程式中计算得到特征电感:

  举例说明,假设PCB厚度为0.0625in (h = 62.5 mil),1盎司覆铜引线(t = 1.35 mil),宽度为0.01in (w = 10 mil),采用FR-4电路板。注意,FR-4的εr典型值为4.35法拉/米(F/m),但范围可从4.0F/m至4.7F/m。本例计算得到的特征值为Z0 = 134Ω,C0 = 1.04pF/in,L0 = 18.7nH/in。

投稿箱:
   电子变压器、电感器、磁性材料等磁电元件相关的行业、企业新闻稿件需要发表,或进行资讯合作,欢迎联系本网编辑部QQ: , 邮箱:info%ett-cn.com (%替换成@)。
第一时间获取电子变压行业资讯,请在微信公众账号中搜索“电子变压器资讯”或者“dzbyqzj”,或用手机扫描左方二维码,即可获得电子变压器资讯网每日精华内容推送和最优搜索体验,并参与活动!
温馨提示:回复“1”获取最新资讯。