智能机器的各种功能已足够稳定与透明,各企业可以尝试着利用智能机器以创造商业价值。智能机器领域的商业投资将快速增长,其中以收入增长与运营效率为投资重点。
到2020年,智能机器将成为30%以上首席信息官的五大投资优先领域之一。
以下三大发展趋势将促使智能机器未来5年内更广泛、经济和高效地应用在各个领域。
1.全新处理硬件;
2.更强大的算法;
3.海量数据。
智能机器的种类及其相关商业案例正在不断丰富,这表明了智能机器解决各种工作难题的商机正在真实而快速地增长。有效识别这些机会将大大促进智能机器发展计划的商业投资。
预计在5年以上的时间内有望为企业带来最大收益的技术包括:智能顾问、智能机器人、商业无人航空器(无人机)、自动驾驶车辆以及虚拟个人助理。
Gartner研究总监刘轶
智能机器的使用通常依赖于改变现有的IT系统与工具接口。因此,首席信息官、IT领导者与战略规划部门应提前规划智能机器开发、使用、持续支持与维护的相关成本以及为智能机器部署而变革现有IT基础架构。
此外,首席信息官们还需预测一系列组织问题。智能机器由多种资产组成,所有这些资产需要统筹管理。这些资产可能属于不同的所有人,有着与所有人业务系统主要目的相关的不同优先级别。
到2020年,首席财务官必须处理由智能机器数据以及“算法业务”(algorithmicbusiness)衍生的估值问题。
由智能机器引擎主动收集、交付信息及洞察结果的技术正在促进从人类生成信息资产到机器生成信息资产的转变。而这些资产包括:新内容、分析与业务流程知识本体、知识产权。
智能机器将完善和推进被称之为“算法业务”的新型业务模式。
这是一种涉及到大量互联、各类关系及动态洞察的经济形态,它基于以算法形式呈现的连接、大数据和新知识产权来支持行动。
智能机器技术遍布多个市场,因此没有单独的“智能机器市场”;相反,它是面向广泛应用案例的综合市场。
智能机器的崛起与其他发展趋势相辅相成,并必将与这些趋势共同颠覆我们的业务方式。新兴的算法业务即是其中最重要的趋势之一,它将带动能够产生新收入的新业务模式,借助算法充分利用大量与互联和关系有关的大数据的动态洞察结果。此类业务模式与智能机器之间的关系非常密切,它将各种技术与智能机器的服务结合在一起。
同时,有关此类服务的知识产权有望产生大量或永久性收入流,因为知识产权可以依法获得专利,从而提升价值。
未来5年,首席财务官将面临解决这些新资产结构经济问题的压力。
到2018年,全球300多万劳动者将接受“机器主管”的监督。
监督职责将逐渐转变为基于与产出和客户评价直接挂钩的绩效指标来监督员工的工作。
“零工经济”——劳动者为短期合同而展开竞争而非为了薪水工作,正在让企业通过结构化、细分任务等形式获得大量人才。
机器主管将直接根据劳动者的业绩数据和自身能力从中获取洞察力,这一功能人类可能无法企及或者无法快速实现。
智能机器技术与服务目前已实现了商业化,并展示出部分关键属性,包括:
轻松应对高度的复杂性与不确定性,并基于学习能力形成假设条件。
检验这些假设条件,得出具体的概率性结论。
针对具体任务环境形成超出许多行业观察家所预测到的理解力。
机器主管将日益充当决策人的角色,而以往这些决策只能由人类管理者制定。
注重绩效评估、激励与支付的商业流程外包商将开发出智能机器“承包管理者”,专门用于评估和监督特殊类别的劳动者。
随着智能机器成为分析绩效的主要工具,劳动者绩效评估将变得更加精细。
针对此类评估的反应也将随之变得灵活和个性化。
到2020年,微软的发展战略将以“微软小娜”(Cortana)为中心,而非Windows。
微软正在通过融合、再定义与交付以智能代理为媒介的用户体验而积极增强其云端办公系统技术套包,它将远胜于此前内部实施的Exchange、SharePoint及其个人生产力工具,如:Outlook和Excel。
通过深入了解用户,以及主动帮助个人以及相关人群工作更加高效,“微软小娜”将发展成为微软推动重塑生产力的跨平台工作界面。