引 言
采用数字信号处理可方便地实现各种先进的自适应算法,完成模拟电路无法实现的功能,因此越来越多的模拟信号处理正在被数字化。目前,应用较多的模/数转换器主要有积分型、逐次逼近型和∑-△型模/数转换器。积分型A/D转换器一般采用双斜积分方式,其原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。优点是用简单电路就能获得高分辨率;缺点是由于转换精度依赖于积分时间,转换速率较低。∑-△型A/D转换器由积分器、比较器、1位D/A转换器和数字滤波器等组成,其原理上近似于积分型,将输入电压转换成时间(脉冲宽度)信号,经数字滤波器处理后得到数字值。电路的数字部分基本上容易芯片化,因此容易做到高分辨率,但成本较高,整体芯片化较难。现有A/D转换器的原理对相关模拟器件的性能及参数要求较高,不便于集成。在需要A/D转换的应用中一般很难将高性能的A/D进行集成,需要购买相应的IP核;双斜积分型A/D等的原理因为需要负参考电压进行反向积分,一般需要双电源供电或负电压基准,这给很多应用带来不便,影响通用性,且速度较慢,一般不支持通讯和显示二者并存的功能。为了解决上述问题,采用DPWM技术进行模/数转换,一方面为缺乏A/D资源的MCU,FPGA等应用提供便利的解决方案,另一方面本方案对模拟器件的性能无特殊要求,便于集成,可用于芯片的制造,且成本较低,可适用于单电源工作,采用快速搜索算法后可使转换速率提高,同时具备通讯和显示二者并存的功能。
1 高速高精度积分型模/数转换器原理
这里采用的转换器,其基本的工作原理是通过DP-WM模块产生脉宽信号(DPWM)。该信号通过简单的RC低通滤波器进行滤波后,通过比较器与被检测信号比较、处理再经比较器发出。最后通过逻辑运算模块对上述比较器发出的信号进行拾取、分析,得到被检测信号的相关信息,并发送给通讯模块及显示模块,具体方案如图1所示。该转换器采用DPWM原理实现,其发出信号的占空比与被测量有确定的对应关系,避免了高精度模/数转换器模拟电路设计的复杂性,采用快速搜索算法后可使转换速率提高。
1.1 数字脉宽调制模块设计
该转换器的核心控制部分可由单片机、DSP,FP-GA等实现。主要完成DPWM的发生、模拟信号的测量及A/D转换结果的显示控制。该设计原型采用Cy-cloneⅡFPGA为控制芯片,其程序的整体结构如图2所示。
具体工作过程:通过锁相环得到高速时钟,用于产生高分辨率的DPWM信号;利用按一定规律调整占空比的DPWM信号实现外部电容电压的控制,与输入模拟量信号比较,直到比较器翻转,此时的Duty×Vref即为A/D转换结果。在系统中,输入50 MHz时钟,通过锁相环倍频到400 MHz,A/D转换精度达到165μV,具体设计如图3所示,其信号功能如表1所示。
1.2 DPWM发生器设计
DPWM发生模块通过实时更新的占空比设定值,发出高分辨率的DPWM信号。在该系统中,DPWM信号的频率为20 kHz,DPWM精度为20 000个时钟周期/占空比。如图4所示,其信号功能如表2所示。