太阳能是一种取之不尽、用之不竭的清洁能源。在全球环境污染和能源危机日益严重的今天,研究太阳能利用对缓解能源危机、保护生态环境和保证经济的可持续发展具有重要意义。目前,由于我国光伏技术与世界先进国家相比仍有不少的差距,且建立大型的独立光伏电站运行成本较高,因此,开发户用光伏并网系统显得刻不容缓。此外,家庭能源的消耗中,空调在夏季的耗电量特别大,并且,在一天中自昼的负荷呈尖峰态,其负荷变化的规律与太阳电池的输出十分一致。对市电供电系统来说起到平峰作用。因此,基于空调器的这个特点,本文提出将户用光伏发电系统和空调结合在一起的设计思想。其工作原理是太阳能转化为电能送至空调中,进而给空调器供电。当停开空调时,还可将太阳电池的电能反馈到电网,使太阳能得到充分利用。在太阳能转移过程中,本文引入最大功率点跟踪的方法,使光伏阵列始终保持在最大输出功率,文章中对这种方法进行了详细的分析。国内对于太阳能空调系统的研究还不是很多,但是,根据国外市场信息,相信国内将来也会有广阔的应用前景。
2 光伏发电系统的工作原理
2.1 系统的组成
系统的主电路如图1所示。
对于整个系统而言,空调器的用电既可由光伏阵列供电,也可以由电网供电。并网逆变器将光伏阵列产生的直流电能转化为和电网电压同频同相的交流电能,向空调器供电。白天,当光伏系统产生的交流电能超过空调电能所需时,超过部分馈送给电网;其他时间,当空调大于光伏系统产生的交流电能时,电网自动向负载提供补充电能。
图1是光伏发电系统的主电路图,他主要由2部分组成,前一部分是Buck-Boost变换器工作在不连续模式下,后一部分是逆变的过程。在光伏发电电路中,Buck-Boost变换器由S1,S2,Lp和D1组成。他的作用是结合最大功率点跟踪对输出电流io整形。Li和Ci作为输入滤波器起到平滑输入电流的作用。逆变器输出电流iac作为对空调器供电电路的输入电流。最大功率点跟踪是基于对S1的开关频率调制来完成的。
在Buck-Boost电路中,当S1开通,S2和D1关断,Lp存储能量,当S1关断,D1和S2开通,存储在Lp和Cdc的能量将转移输出,在开关周期Ts期间,S2的开关断是通过比较io和给定电流i'ac,reg的关系来控制的。
Lp作为临时存储能量的缓冲器,如果光伏阵列输出功率高于空调器的吸收的功率,存储在Lp中的能量将在S2关断后通过LS和D2转移到Cdc 上,Cdc的平均电压等同于Vac峰值电压的一半,Cdc用来校正i'ac,reg和i0。因此,Lp和Cdc的连接在向充电电路传输能量的过程中,起到了电流整形和减少Cdc上电压应力的好处。在逆变过程中,逆变器由SA,SB,SC和SD组成,SA和SB开通在交流电压的正半周期,SC和SD开通在交流电压的负半周期。当S2和D1开通时,L2和之间的电流差异通过C1来吸收,L4用来滤去输送到空调器上的高频电流成分,实现逆变器输出平滑的正弦波。
2.2 光伏电池的输出特性
在光伏发电系统中太阳电池直接将太阳能转变成电能,太阳电池的输出由多种因素决定,如日照情况、温度等,在不同的环境中,太阳电池的输出曲线是不同的,相应的最大功率点也不同。日照越强,太阳电池能够输出的功率也就越大,而温度刚好相反,太阳电池本身温度越高,太阳电池能够输出的功率越小,他的输出具有非线性特性。图2给出太阳电池的输出特性曲线。图2(a)是太阳电池温度在25℃时太阳电池的U,I和日照(S)的曲线。从图中可以看出,曲线上任一点处的功率为P=UI,其值除与U,I有关外,还与日照(S)、太阳电池温度等有关。由图2(b)进一步可知,由于太阳电池的工作效率等于输出功率与投射到太阳电池面积上的功率之比,为了提高本系统的工作效率,必须尽可能地使太阳电池工作在最大功率点处,这样就可以以功率尽可能小的太阳电池获得最多的功率输出。在图2中,A,B,C,D,E点分别对应不同日照时的最大功率点。
2.3 太阳电池的最大功率点跟踪
太阳能电池的最大功率点跟踪是为充分利用太阳能,使太阳能电池始终输出最大电功率。太阳能电池的MPP跟踪是基于对开关频率S1的调制。开关S1的PWM信号是由低频信号调制。太阳能电池的模型可以用图3电路等效。