E1为整流后进行滤波,如果电容值过大,寄生电感电阻过大,会造成不必要的能量损耗,而且在上电瞬间,会造成整流桥瞬间冲击电流过大。
本次设计采用为耐压450V的电解电容C=1200μF。整流桥采用KBPC5010型二极管,耐压为1000V,正向平均整流电流IF(AV)=50.0A(t=55℃),且体积较小、发热低、较实用,所选器件符合本设计的要求。
② 降压部分
降压电路如图3所示。

图3 Buck降压单元
根据系统要求,直流输入最大300V,直流输出最大60V,电流输出最大10A。本电路中的IGBT采用FGA25N120AND,VCES=1200V,IC=20A,trr=235ns,参数满足实验要求。
Vref为直流电压输入,R0、C0为无感阻容吸收部分,以吸收IGBT关断瞬间储存的能量和滤除尖峰,RS为采样电阻,DCA-DCA为电流互感器,采样输出电流,“Sample”为采样输出端。各参数具体选取如下:
A 无感电容C0、电阻R0的计算
C0=(2.5~5)×10-8×If;If为IGBT的电流(20A),可以得出C0=0.5~1μF;
R0=((2~4)×535)/If=53.5~107。
实际实验中,经过不同RC的匹配,最终选择电阻R0为100Ω/5W、C0为1μF/630V。
B 分压采样电阻的选择
为了不影响后级输出,分压支路电流应尽可能的小,分压电阻尽量大,但考虑到电阻越大,内部噪声也越大,二者折中。DSP采样电压最大为3V,而直流输出最大为60V,故设定分压比例为1/20,选取如下:RS=5KΩ/0.1,RS=250Ω/0.1。
C 电感L的选择
输出电感的量值对于在开关关断时维持到负载的电流十分关键。为了能在最极端的输出电压和输入电流条件下保证最小的电感值仍然支持降压变换器的输出电流,从而向负载输出电流,这个最小电感值是需要确定的一个量值。
下式为一经验公式,用于确定一个连续Buck变换器所需的临界电感值。

其中,f为IGBT的开关频率(10~20kHz),D为占空比,IO为输出电流(5~10A)。可计算得LC=2.5~5.0mH,本设计取5.0mH。
输出Vdc=50V,Imax=10A,Rs采样输出电压,通过线性光耦,由DSP进行PID运算调节输出PWM信号,使Buck电路输出电压恒定50V。
D 滤波电容E2的选择
输出端电容器(E2)是为了使输出电压变得平滑而使用的,升压型的产品因为针对负载电流而断续地流入电流,与降压型产品相比需要更大的电容值。在输出电压较高以及负载电流较大的情况下,由于纹波电压会变大,因此根据各自的情况而选用相应的电容值,推荐使用2000μF以上电容器。
为了获得稳定的输出电压,最好选用等效串联电阻(ESR)较小且容量较大的电容器。特别推荐使用低温特性及泄漏电流特性等优异的钽电解电容器或有机半导体电容器,而且采用小容值电容与大电容(耐压等级相同)并联可起到消除高次谐波与降低等效串联电容的作用。
本次设计中,设定IGBT开关频率为f=10kHz,电感L=5.0mH,E2=2000μF/400V,钽电解电容器。
③ 纹波改善
在实验中发现,纹波与电感有较大关系,当输出电流未达到电感磁芯的饱和电流时,输出尖峰较小;当达到电感磁芯的饱和电流时,输出尖峰瞬间增大。改善电感及磁芯,采用饱和电流较大的电感,在尖峰较小的情况下,可以达到电流标准值。