原则上,最低衍射极限光束参数乘积(BPP)与波长成正比,也就是说,随着波长(λ)的增加激光打标机,光束质量会逐渐变差。光纤耦合模块需要一个特定的光束参数乘积,这意味着可以耦合到一根光纤中的发射体(emitter)的数量,会随着波长的平方因子(λ-2)而减少。例如,在1940nm时可以耦合到指定纤芯中的发射体的数量,要比在970nm时减少4倍。
通常慢轴发散角会随着波长的增加而增加,这意味着慢轴准直透镜(SAC)的焦距必须合适,以避免由于SAC造成的能量损失。
对于输出非标准波长的半导体激光器巴条,其快轴方向的发散角可达到90°,因此需要使用具有高数值孔径和高质量的快速轴准直透镜(FAC)。
必须要考虑光学元件自身的损耗。特别是当波长超过2200nm时,由于羟基(OH)伸缩会导致大量水吸收。目前几乎微型光学元件使用的所有材料激光打标机,都会发生这种水吸收现象。
表1给出了各种光纤耦合半导体激光器模块(见图1)所能实现的输出功率。
4.高功率半导体激光器的波长稳定技术
高功率半导体激光器系统作为发展成熟的激光光源,在材料加工和固体激光器泵浦领域具有广泛应用。尽管高功率半导体具备转换效率高、功率高、可靠性强、寿命长、体积小以及成本低等诸多优点,但是光谱亮度相对较差则是一个不容忽视的缺点。半导体激光器bar条典型的光谱带宽大约是3~6nm,而且峰值波长会受工作电流和工作温度的影响而发生漂移。
通常,掺钕固体晶体是对其相对较宽的808nm吸收带进行泵浦,标准的半导体激光器系统能很容易地满足808nm泵浦的光谱要。但是在过去几年里,随着半导体激光器bar条的工作电流和功率的不断提高,导致在从阈值电流上升到工作电流的过程中产生了更大的波长漂移。为了确保在整个工作范围内实现稳定、有效的泵浦,需要控制泵浦半导体激光器的光谱,使其光谱带宽始终与激活激光介质的吸收带宽相匹配。
另一方面,光纤激光器的迅速发展,也增加了对其他波长的泵浦源的需求。例如,泵浦波长为1080nm左右的标准掺镱光纤激光器,就需要915nm、940nm和980nm的光纤耦合半导体激光器系统,特别是980nm泵浦区尤为重要,因为掺镱材料在该泵浦区具有较高的吸收系数和较窄的吸收带宽。
半导体激光器系统亮度的进一步增强是通过偏振耦合和波长复用实现的。偏振耦合仅能将亮度提高一个单位系数的两倍,而波长复用技术受可用波长数量n的限制。 事实上,波长复用进行功率扩展是以牺牲光谱亮度为代价。
5.实现智能控制的半导体激光器电源设计
由于具有体积小、重量轻等特点,半导体激光器(LD)在信息、通讯、医疗等领域得到日益广泛的应用,且与电子器件结合实现单片光电子集成。但是LD容易受到过电压、电流或静电荷的冲击而损坏,其电源的研究愈来愈受到人们的重视。若电源输出电压或电流波形质量不高,又缺乏有效保护,将导致激光器性能下降或造成损坏,因此要设计性能优良的电源来保证LD安全稳定地工作。
本文以数字集成电路为核心,设计能够实现智能控制的半导体激光器电源。
半导体激光器LD工作影响因素
半导体激光器的核心是PN结一旦被击穿或谐振腔面部分遭到破坏,则无法产生非平衡载流子和辐射复合,视其破坏程度而表现为激光器输出降低或失效。
造成LD损坏的原因主要为腔面污染和浪涌击穿。腔面污染可通过净化工作环境来解决,而更多的损坏缘于浪涌击穿。浪涌会产生半导体激光器PN结损伤或击穿,其产生原因是多方面的,包括:①电源开关瞬间电流;②电网中其它用电装备起停机;③雷电;④强的静电场等。实际工作环境下的高压、静电、浪涌冲击等因素将造成LD的损坏或使用寿命缩短,因此必须采取措施加以防护。
传统激光器电源是用纯硬件电路实现的,采用模拟控制方式,虽然也能较好的驱动激光,但无法实现精确控制,在很多工业应用中降低了精度和自动化程度,也限制了激光的应用。使用单片机对激光电源进行控制,能简化激光电源的硬件结构,有效地解决半导体激光器工作的准确、稳定和可靠性等问题。随着大规模集成电路技术的迅速发展,采用适合LD的芯片可使电源可靠性得到极大提高。
系统设计
系统框图见图1。主要由以下几部分构成。