图2 载体催化元件检测甲烷浓度的原理
3.1.2 甲烷检测桥路
将图2简化如图3所示。当电桥输出端接至高输入阻抗装置(如运算放大器或数字电压表等)时,电桥相当于工作在输出开路状态,其输出电压为:
3.2 A /D转换电路
根据该传感器的多功能与高精度要求,A /D转换电路采用TLC2543C,把测量模拟信号转换成数字信号。TLC2543C为10位开关电容逐次逼近的模数转换器。通过一个串行的3态输出端与主处理器或其他外围器件相连,减少了硬件走线。除了高速转换和通用控制功能之外,器件具有11路的模拟输入端,完全能够满足多路采样和功能升级。器件的转换器结合外部输入的差分高阻抗基准电压,具有简化比例转换以及模拟电路与逻辑电路和电源噪声隔离的特点。开关电容的设计还可以使在整个温度范围内减小转换误差,提高系统的精度。
3.3 显示电路和RS232串行口通信电路及硬件看门狗电路
为了适应矿井环境,该传感器采用带背光的宽液晶显示屏,增强视觉效果,并且带有日历、时间显示功能。
与PC机进行通信,存储数据,从而对矿井环境建立数据库,对环境进行分析,单片机的串行口加上MAX232电平转换器,采用3线制与PC机进行数据传送,波特率为9 600 bp s。单片机T1计数器作为串行口发送和接收数据的波特率发生器。采用XI2COR公司带有串行接口( SP I) EEPROM的看门狗芯片X5045,在传感器初始化时进行设置,并且将其设置数据保存在EEPROM中。使整个系统的可靠性大大提高,而且最大程度的节省了系统的资源。
3.4 外遥控电路和放大电路
系统中也使用了红外通信的模式。TOSH IBA的TC9148P红外调制发射芯片,有单键发射功能和连续发射功能。遥控发射器的选择、上调、下调三键均采用连续发射的模式。接收部分只采用了红外接收头,在单片机内部实现了软件解码的功能。红外遥控的使用使得操作方便、可靠。
采用数字电位器X9313 取代了模拟电位器。对传感器的精度和灵敏度进行调整,使得精度和准确度提高。
4 软件设计和算法实现
系统上电后,首先对单片机进行初始化,然后对A /D进行初始化,之后系统开始工作。首先采样甲烷浓度并显示,超过安全值报警; 然后采样环境温度并显示; 最后显示时间,循环采样并实时显示。
另一方面用外部中断INT0等待键盘输入,INT0中断即进入键盘设置程序,可调整日历时间、设置安全报警值。其主程序与PC机和红外线、键盘中断程序流程图如图4所示。在系统工作的初始状态设定完成之后,可以对甲烷传感器进行气体的测定。
图4 主程序与PC和红外线、键盘中断程序流程图 <Script type=text/javascript> function ImgZoom(Id)//重新设置图片大小 防止撑破表格 { var w = $(Id).width; var m = 650; if(w < m){return;} else{ var h = $(Id).height; $(Id).height = parseInt(h*m/w); $(Id).width = m; } } window.onload = function() { var Imgs = $("content").getElementsByTagName("img"); var i=0; for(;i
5 误差讨论
5.1 工作电压带来的误差
由传感器测量电路输出电压推导公式可知,在对输出电压线性化时忽略了二次项,因此存在着非线性误差,这个误差可以在单片机中采用模糊数学补偿的方法进行消除。在A /D ( TLC2543)转换通道中,基准电压的波动可导致不可预测的误差甚至错误结果。这种误差的消除方法只有在基准电压输入端采用精密电源芯片,使电压值稳定在准确值2.5 V。