历经十四年筹备,世界上最大的核聚变装置——国际热核聚变实验反应堆(ITER)在法国南部正式开始组装工作,意味着人类距离实现可控核聚变又近了一步。该项目由 35 个国家合作完成,中国提供了磁体馈线、极向场线圈等重要部件。
可控核聚变被称为“人造太阳”,能用极少量的清洁燃料产生大量能量,被视为解决能源和气候问题的理想方案。接下来,ITER 计划用 4.5 年完成安装,到 2025 年进行第一次等离子体放电,最终验证核聚变商业化应用的可行性。
图片来源:ITER
当地时间 7 月 28 日,世界上最大的核聚变装置——国际热核聚变实验反应堆(ITER),在法国南部正式开始组装,这也标志着新能源时代的开始。35 个合作国家的领导人通过视频远程参加了庆典。
近几个月,来自世界各地的组件陆续抵达法国,使得 ITER 的组装启动成为可能。这表明共同参与 ITER 国际研究项目的 35 个国家愿意以这种方式来共同应对气候变化。
太阳通过核聚变产生能量,向地球传递光和热,使地球上的生命得以延续。ITER 就是通过模仿太阳的核聚变过程,以达到产生能量的目的。核聚变能够提供清洁、可靠的能源,并且不产生碳排放。核聚变也是安全的,因为它只需要少量的燃料,并且物理上不存在因熔毁而发生泄漏事故的可能。
核聚变的燃料存在于海水和金属锂中,可以持续供应几百万年。一个菠萝大小的核燃料所释放的能量就相当于 1 万吨煤燃烧释放的能量。
建造和运营一座核聚变反应堆的成本与核裂变反应堆的成本相近,但它产生的废弃物不需要花费高昂的成本和漫长的时间进行处理。
一旦 ITER 项目完成,它将证明核聚变可以实现规模化商业运作,持续产生能量。
前所未有的国际合作
上世纪 50 年代,苏联科学家首次提出了托卡马克的概念——磁约束聚变,此后核聚变能量研究一直是国际上广泛合作的领域。ITER 项目于 2006 年诞生,35 个合作国家包括欧盟成员国(加上英国和瑞士)、中国、印度、日本、韩国、俄罗斯和美国。
这些国家总计拥有世界 50% 以上的人口,全球 80% 以上的国内生产总值(GDP),汇集了大量的专业知识和资源,使建造世界上第一个具有工业规模的核聚变装置成为可能。
法国是东道国。欧盟、英国和瑞士是东道主成员国,它们为 ITER 项目提供了 45% 的资金。其他成员国各出资 9%,即美国、中国、日本、俄罗斯、印度和韩国。
ITER 成员国的贡献约 90% 以实物形式提供,增加了这个多重机器的国际复杂性。这个机器被称为托卡马克(Tokamak),它来自俄语,意为“磁环”。完成后的托卡马克将由 100 多万个部件组成。
托卡马克装置示意图。图片来源:ITER
为了准备机器组装,近几个月来,这些前所未有的巨型部件已经陆续运抵法国。大部分的部件都重达几百吨,长度超过 15 米。这些零件是世界各地工厂、大学和国家实验室 5 年多来的技术结晶。
托卡马克组件必须满足非常严格的规范。它们还必须遵循一个复杂的时间表,按时到达法国。ITER 总干事 Bernard Bigot 博士说:“一部分一部分地组装机器,就像在一个复杂的时间轴上组装一个三维拼图。”
他说:“项目管理、系统工程、风险管理和机器装配物流的每一个方面都必须协同配合,像瑞士手表一样精确。未来几年,我们有一个复杂的流程需要遵循。”
组装工作将于 2025 年 12 月结束。到那时,ITER 项目的科学家和工程师们将进行第一次等离子体放电。
托卡马克将提供多少能量?
ITER 项目的核电站将产生大约 500 兆瓦的热能。如果持续运行并接入电网,产生的能量将转化为大约 200 兆瓦的电能,足够 20 万户家庭使用。
商业核聚变电站可能采用稍大一点的等离子体室,一座电站可以提供的电力相当于 ITER 的 10 到 15 倍。一座 2000 兆瓦的核聚变电站可以为 200 万户家庭供电。
并且,核聚变发电厂运行过程中没有碳排放,也就是说不会释放二氧化碳。但是核聚变技术对解决气候变化问题的贡献取决于核聚变反应堆建造的速度。目前,超过 70% 的碳排放来自于能源的使用,超过 80% 的能源消耗又来自于化石燃料。
Bigot 博士预测说:“如果核聚变能够投入广泛使用,并成为可再生能源的补充,那么电力的使用量将大大提升,由交通、建筑和工业所带来的温室气体排放将减少。实现仅使用清洁能源将是我们这个星球的一个奇迹。”