国内动态无线充电技术发展动态
国内各高校、研究所也相继开展了无线电能传输技术及应用的研究工作,并于2011年10月,由中国科协资助在天津工业大学举办了“无线电能传输关键技术问题与应用前景”学术沙龙,这是国内在无线电能传输领域的第一次学术会议,随后2012年在重庆举办了“无线电能传输技术研讨会”、2013年在贵阳举办了“无线电能传输关键技术与应用学术研讨会”、2014年在南京举办了“无线电能传输技术与应用国际学术会议”、2015年在武汉举办了“无线电能传输技术及应用学术会议”,展示了国内无线电能传输技术良好的发展态势和前景4。
国内几所较早开展与动态无线电能传输技术相关研究的高校主要包括华南理工大学、湖南大学、中国矿业大学、南京航空航天大学、上海交通大学、东南大学、天津工业大学、重庆大学、中科院电工所、西南交通大学、哈尔滨工业大学等。这些高校前期研究主要集中在大功率电力电子电能变换与拓扑设计、磁耦合机构优化设计、系统建模优化与控制、系统复杂动力学行为分析与控制、能量和信息同步传输、负载识别与异物检测、电磁兼容与电磁屏蔽等技术方而,相关理论、技术难点以及关键问题的研究己经取得一定成果,并且己经研制出原理样机。
东南大学对动态无线能量传输的原副边线圈尺寸对传输效率以及侧移的影响进行深入研究,并提出基于频率控制的方法达到系统能量传输效率最优。天津工业大学基于耦合模理论基础,分析了运动状态下的高速列车无线供电系统发射线圈与接收线圈固有谐振频率的变化对系统传输效率的影响,提出了一种可调节发射端功率因数的频率跟踪控制技术,并于2013年提出将动态无线能量传输技术应用于高速铁路列车充电的设想,建立了高铁充电沙盘模型,受到广泛关注。重庆大学提出了参数识别理论,以改善原边控制时副边参数难以调整的问题,在此基础上建立了系统的能量流动模型。
虽然世界各国研究机构仍在不断深入研究电动汽车动态无线供电技术,并且不断推进相关理论和技术研究的发展,但是其中依旧存在一定的关键技术需要研究,其中包括磁耦合机构设计与优化、系统鲁棒控制技术、电磁兼容技术研究,以便最大限度提升系统工作性能,保证系统的安全、可靠、稳定、高效运行。
电动汽车动态无线充电技术关键问题磁耦合机构设计与优化
现有的动态无线供电导轨大致分为以下几类:分立形式的连续单线圈结构、矩形长线圈型与双磁极型。有文献提出一种新型三相交流激励能量发射导轨及Quadrature-type接收端,消除了三相交流电源之间的交叉藕合并增加了能量拾取机构横向偏移容忍度。但是长线圈方案普遍存在路而施工而积大、功率密度低、轨道两侧磁场暴露水平高等不足。
KAIST在奥克兰大学研究基础上在线圈中加入经过优化设计的磁芯结构,较奥克兰大学的解决方案提升了传输效率和传输距离,但是增加了设备成本5。
2015年KAIST研究人员针对沿行进方向存在耦合系数零点问题,提出了原边dq双相供电导轨结构。该结构虽然能够解决耦合系数零点问题,但由于采用原边电流相位检测双环控制,需要根据电能拾取机构空间移动位置,利用锁相环和直流斩波器实时控制d轴与y轴双供电导轨电流幅度与相位(二者相位差90度)。但控制环节过多,且额外引入的发射线圈、H桥与直流斩波器又增加了功率损耗,导致的系统效率降低问题难以避免。
哈尔滨工业大学通过多年的研究,提出一种基于多初级绕组并联方式的电动汽车公路式动态无线充电方法,利用分段导轨实现对行驶中的电动汽车无线供电,此外对双极型导轨结构进行了进一步优化,大幅降低了磁芯用量。之后又提出桥臂连接型多相接收端电能拾取机构,消除功率零点对传输}h}能及稳定性的影响。多相拾取机构由平板磁芯与多个绕制方向相同的接收线圈构成,间隔的两个线圈同名端相连,分别构成两相接收线圈。通过自解耦原理优化两相线圈的尺寸、位置等参数消除交叉藕合,使两相线圈可以在任意位置同时工作互不影响,实现高效能量接收。
能量传输鲁棒控制技术
在动态无线电能传输控制技术方而,主要分为原边控制、副边控制和双边控制三种方式。奥克兰大学提出通过调节逆变器驱动信号占空比来控制原边谐振电流的方式,简化了系统的结构。 KAIST在系统设计上采用原边恒流控制,即在逆变器前端加入DC/ DC变换器,通过调节原边直流母线电压来实现逆变器输出恒流控制。原边控制的目的主要在于能够使供电导轨上产生恒定的交变磁场,进而实现对输出功率的鲁棒控制。香港大学研究人员提出无需双边通信的功率和最大效率双参数同步控制方法,通过DC / DC变换器调节副边等效交流阻抗实现最大效率控制,通过搜索原边输入功率最小值实现输出恒功率控制6。
对于动态无线电能传输的鲁棒控制策略,国外研究人员普遍采用PI控制算法,控制参数一般通过极点配置法选取,较为简单且易于实现。但是现有的建模与控制研究通常忽略电动汽车动态无线供电实际应用中的多种不确定扰动信息,系统动态响应特性以及多参数扰动下快速鲁棒控制器设计的研究函待进行。