图5 仅一次绕组有感应电动势的情况
在此情况下,由一次侧流向次级的共模电流为:
在仅二次绕组有感应电动势、一次绕组电动势为零的情况如图6 所示。图6 中:e2为每匝二次绕组的感应电动势;C2x为一匝二次绕组与一次绕组最外层间的寄生电容。
图6 仅二次绕组有感应电动势的情况
在此情况下,由次级流向一次侧的共模电流为:
根据叠加原理,可得在一次侧最外层绕组和次级间流动的共模电流:
3、屏蔽绕组抑制共模传导EMI 原理
根据图3 所示的结构。绕制变压器,并在交流整流滤波后增设13 mH 差模滤波电感和6. 8差模滤波电容,对开关电源进行传导EMI 测试,结果如图6 所示。由图6 可见,传导EMI 非常严重,不能通过电磁干扰测试。在交流整流前增设35 mH 共模滤波电感,传导EMI 测试结果如图7 所示,产品即可通过测试。比较测试结果可得出:在图3 所示的电路中,主要是由于大量共模传导EMI,才使电源不能通过电磁干扰测试。
图7 变压器内部不设置屏蔽的传导EMI 测试结果
去掉共模滤波电感,在变压器中增设一次侧屏蔽绕组如图8 所示,并将E 与A 点(电容Cin正极)相连。此时,一次侧屏蔽绕组代替了原一次绕组的最外层,假设一次侧屏蔽绕组与二次绕组间的寄生电容与原变压器一次侧最外层绕组与二次绕组的寄生电容相同,则:
图8 变压器内部不设置屏蔽在电路中增设共模滤波电感的传导EMI 测试结果
由式(4) 可知:在电路工作情况不变的状况下,共模电流i1的第一项减小为原来的1 /(2m +1),故传导EMI 减小了,测试结果如图9 所示。
由于在共模传导EMI 的模型中输入滤波电容Cin是短路的,因此,若将E 与电容Cin负极相连,屏蔽绕组对传导EMI 的抑制效果与E 点、A 点相连的情况是一致的,测试结果如图10 和图11 所示。
图9 变压器内部增设一次侧屏蔽绕组