3变压器等效电路
研究理想变压器的假设条件是:
(1)磁心材料有足够大的磁导率,其值可等效地看作是无限大(μ∞);
(2)励磁电流足够小,其值可等效地看作是零(im=0);
(3)磁心的任何损耗都小到可以忽略;
(4)线圈绕组的电阻小到可以忽略;
(5)所有绕组之间的磁通都是完全耦合,没有磁通“泄漏”(k=1);
(6)绕组间的电容小到可以忽略。
但实际变压器不是这样的。下面我们将研究实际变压器的等效电路。
3.1有限磁导率
如果μ是有限的,则im将不等于零,在原边绕组中就有励磁电流存在。
从式(9)和(10),可写出:
i1=ΦRm/N1+N2i2/N1=im+ni2
式中im是励磁电流。这一增加的电流可以在等效电路中增加一个和原边线圈并联的电感Lm来表示,如图10所示。

图10磁心励磁电流
3.2磁心损耗
(1)磁滞损耗
在2.6节已叙述了环形磁心B-H之间的滞后关系以及和磁滞回线闭合曲线面积成正比的损耗。闭合曲线面积和频率成正比,在频率是恒定时(尽管对脉冲变压器来说,变压器工作频率的变化率是一含糊的概念),从实验推导出的磁滞损耗公式是:
Ph=khBmax1.6(W)(19)
式中kh—是材料的磁滞损耗系数。
(2)涡流损耗
由法拉弟定律可知,当磁心中磁通交变时,磁心中亦会产生感应电动势,这个感应电动势会在磁心材料上产生环形电流,这个电流会在磁心的有限电阻上引起功率损耗。这个损耗和频率的平方成正比,但在频率基本恒定和磁通近似均匀分布时可得:
Pe=keB2max(W)(20)
式中ke—是材料的涡流损耗系数。
(3)磁心损耗
磁滞损耗和涡流损耗两项合并,就能求得磁心损耗近似值的有用模型。
Pc=khBmax1.6+keBmax2≈αΦ2max
式中Φmax和电压U1max成正比,所以Pc∝U1max2。虽然这仅仅是一个不严密的近似,但它使我们能用一个并联在原边绕组两端的等效电阻RC来作为磁心损耗的模型,如图11所示。

图11铁心损耗的等效电阻
为了减小磁心损耗,可用高电阻率的磁性材料(如铁氧体磁性材料)或用能减少涡流电流的磁心结构(如叠片铁心)。
3.3绕组电阻
用来绕制变压器线圈的导线,其电阻不为零,所以它将在每一绕组上产生电阻损耗。为此在等效电路中每一线圈上增加一个串联电阻,如图12所示。

图12绕组电阻
为了减小绕组损耗,应尽量用较大截面积的导线或尽量减少匝数。
3.4漏磁通
在2.10节已经提到磁通不可能完全耦合所有的线圈(即有漏磁通),线圈的自感可写成: