如果将 24V 电源连到 12V 电路上,会出现什么情况? 如果电源线和地线不小心接反了,能不损坏电路吗? 您的应用是否处于一种严酷的环境,其中输入电源可能振荡到非常高的电压或低于地电位? 即使这些事件不太可能发生,但是只要出现一次,就能损坏电路板了。
可以采取哪些方法来保护敏感电路免受过高、过低甚至负电压的影响? 为了隔离负的电源电压,系统设计师传统上给电源串联一个功率二极管。不过,这个二极管占用了宝贵的电路板空间,并在负载电流很大时,浪费大量功率。
另一种常见的解决方案是给电源串联一个高压 P 沟道 MOSFET。P 沟道 MOSFET 比串联二极管所浪费的功率少,但是 MOSFET 和驱动 MOSFET 所需电路使成本提高了。
这两种解决方案的缺点是,它们都牺牲了以低电源电压工作的机会,尤其是串联二极管。另外,两种解决方案都不能防止受到过高电压的影响,这种保护需要更多电路,包括高压窗口比较器和充电泵。
欠压、过压和电源反向连接保护
LTC4365 是一种独特的解决方案,简要和可靠地保护敏感电路免受不可预测的高或负电源电压所影响。LTC4365 隔离高达 60V 的正电压和低至 -40V 的负电压。只有处于安全工作电源电压范围内的电压才能传递给负载。惟一需要的外部有源组件是一个双 N 沟道 MOSFET,连接在不可预测的电源和敏感负载之间。
图 1 显示了一个完整的应用。电阻分压器设定过压 (OV) 和欠压 (UV) 跳变点,以连接或断开负载与 VIN 的连接。如果输入电源电压变化到这个电压窗口之外,那么 LTC4365 就快速断开负载与电源的连接。

图 1:汽车应用中,完整的 12V 欠压、过压和电源反向连接保护电路
双 N 沟道 MOSFET 在 VIN 处隔离正和负电压。在正常工作时,LTC4365 为外部 MOSFET的栅极提供 8.4V 增强电压。LTC4365 的有效工作范围为 2.5V 至 34V,过压-欠压窗口可以处于这个范围内的任何地方。就大多数应用而言,在 VIN 处无需保护性箝位,这进一步简化了电路板设计。
准确和快速的过压和欠压保护
LTC4365 中两个准确 (±1.5%) 的比较器监视 VIN 处的过压 (OV) 和欠压 (UV) 情况。如果输入电源分别升高至高于 OV 或降低至低于 UV 门限,那么外部 MOSFET 的栅极就被快速关断。外部电阻分压器允许用户选择适合 VOUT 处负载的输入电源范围。此外,UV 和 OV 输入的漏电流非常低 (在 100°C 时,典型值 < 1nA),从而允许外部电阻分压器中的高值电阻。
图 2 显示当 VIN 从 -30V 缓慢上升至 30V 时图 1 电路的反应。UV 和 OV 门限分别设定为 3.5V 和 18V。当电源电压位于 3.5V 至 18V 的窗口内时,VOUT 跟踪 VIN。在这个窗口之外,LTC4365 关断 N 沟道 MOSFET,即使 VIN 为负,也断开 VOUT 与 VIN 的连接。

图 2:VIN从 -30V 上升到 30V 时的负载保护
新颖的电源反向连接保护方法
LTC4365 采用了一种新颖的负电源电压保护电路。当 LTC4365 在 VIN 处检测到负电压时,它会快速连接 GATE 引脚和 VIN。在 GATE 引脚和 VIN 之间没有二极管压降。当外部 N 沟道 MOSFET 的栅极电压为最大负电压 (VIN) 时,从 VOUT 到 VIN 负电压的泄漏最小。
图 3 显示了当 VIN 被带电接入 -20V 电压时,会发生什么情况。VIN、VOUT 和 GATE 在连接建立瞬间从地电位开始变化。由于 VIN 和 GATE 连接的寄生电感,VIN 电压和 GATE 引脚在低于 -20V 的电压上明显地振荡。外部 MOSFET 必须具有能承受这种过冲而不被损坏的击穿电压。
