图 3:VIN带电接入 -20V
在负电压瞬态时,GATE 引脚跟随 VIN 的密切程度决定了 LTC4365 反向连接保护电路的速度。在图中所用比例情况下,两种波形几乎无法区分。注意,无需额外的外部电路来提供反向连接保护。
AC 隔离
LTC4365 有一个恢复延迟定时器,可滤除 VIN 噪声,并有助于防止 VOUT 颤动。在 OV 或 UV 故障发生之后 (或当 VIN 变为负电压时),输入电源电压必须至少在 36ms 之内返回所希望的工作电压窗口,以重新接通外部 MOSFET。若在不到 36ms 时间内脱离并重新返回故障状态,那么 MOSFET 保持断开状态。
图 4 显示,LTC4365 隔离 40V 至 -40V 的 AC 线电压。在负电压部分,GATE 引脚跟随 VIN,但当 VIN 变为正电压时,GATE 引脚仍然保持在地电位。注意,VOUT 一直不受影响。

图 4:36ms 恢复定时器隔离 28V、60Hz AC 线电压
在故障情况下的高压瞬态
图 5 显示一个测试电路,该电路在过压情况下产生瞬态。标称输入电源为 24V,过压门限为 30V。图 6 显示 VIN 在过压情况下的波形。这些瞬态视 VIN 和 GATE 引脚上寄生电感的不同而不同。即使在实验中,可选电源箝位 (D1) 未使用,电路仍然能承受这些瞬态而不被损坏。

图 5:在VIN电感很大时发生 OV 故障
图 6:未使用 TransZorb (TVS) 时,发生 OV 故障时的瞬态
在两个电源之间做出选择
该器件停机时,VIN 和 VOUT 引脚可以由两个不同的电源以不同的电压驱动。LTC4365 自动驱动 GATE 引脚至低于两个电源之中较低的电压,从而防止电流从任一方向流过外部 MOSFET。图 7 所示应用使用两个 LTC4365,以在两个电源之间做出选择。应该小心地确保在任意给定时间内两个 LTC4365 中只有一个被启动。

图 7:在两个电源之中选择一个
在VOUT已加电时,VIN带电反向接入
甚至在 VOUT 由单独的电源驱动时,LTC4365 也可防止受到负 VIN 连接的影响。图 8 显示,当 LTC4365 处于停机模式,VOUT 加电至 20V,VIN 带电接入 -20V 电压时的波形。只要不超过外部 MOSFET 的击穿电压 (60V),那么 VOUT 端的 20V 电源电压就不受 VIN 端反向极性连接的影响。

图 8:VOUT加电时VIN热插拔 (Hot SwapTM) 至负电源的波形
结论
LTC4365 控制器保护敏感电路免受过压、欠压和电源反向连接的影响。只要合乎用户可调的 UV 和 OV 跳变门限,那么电源电压就被传递给输出。在这个窗口之外的任何电压都被隔离,窗口电压最高为 60V,最低为 -40V。
LTC4365 采用纤巧的 8 引脚 3mm x 2mm DFN 和 TSOT-23 封装,由于 LTC4365 采用了新颖的架构,所以可提供坚固和小尺寸的解决方案,而且所需的外部组件最少。LTC4365 无需给电源串联反向电压隔离二极管,用背靠背的外部 MOSFET 就可自动执行这一功能。LTC4365 提供 2.5V 至 34V 的宽工作电压范围,在停机时仅消耗 10µA 电流。