首先,AMC1210中的正弦滤波器对调制器的位流进行滤波,以将其转换为中等分辨率、中等速率的数据字。对ADS1205而言,最高效的三阶正弦滤波器的过采样率(OSR)为128。过采样率超过128时,OSR每增加一倍,信噪比仅增加3dB。在解调过程后利用积分器可以达到同样的效果,而且还能缩短滤波器的延迟时间。
将OSR设为128时会产生一个14位的数字调制信号,其数据速率为:

该等式中,fmod表示调制器的时钟频率,该时钟频率在调制器中降为原来的一半。在下例中,当时钟信号频率为32.768MHz时,三阶正弦滤波器的数据速率为128kHz。
现在需要对信号进行解调(如图3所示)。

图3:AMC1210内部的解调过程示例
这表示当未调制载波为正时,14位数字信号须乘以+1,若未调制载波为负则须乘以-1。我们需要考虑到载波信号通过旋转变压器、线圈、调制器以及正弦滤波器时产生的延时。因此,AMC1210具有相移校验功能,能够在相移90度内正常工作。若相移超过此范围,则必须在寄存器中编程。
最后,积分器OSR的设定原则是:载波频率是整个滤波器传输函数陷波的整数倍。在时域中,这等同于在多个载波周期内求积分。这样就完全抑制了载波频率。在此例中,如果积分器的OSR为16,则分辨率提高2位(0.5位/因数2)。然而输出信号的幅度降低了3dB(-0.5位),原因是积分器产生的是解调信号的平均电压而非峰值电压。
总结:AMC1210的输出为数字正弦波或余弦波,数据速率为8kHz,噪声性能为15.5位。该信号的幅度比输入调制信号降低了3dB。
角度检测与控制环路同步
角度检测与马达控制环路的同步非常重要,因此,数字滤波器的输出数据速率与载波频率都必须可调。
通过AMC1210内置的寄存器映射可以设定滤波器结构,正弦滤波器的阶数(1阶、2阶及3阶)及过采样率(1~256)都是可编程设定的。积分器可以运行在固定的过采样率上,也可以由外部采样及保持信号触发。
载波频率也是以PWM格式的AMC1210产生。因此,提供了高达1,024位的移位寄存器,一个周期的载波正弦波可以存储在该寄存器中,寄存器的PWM位流可由仿真Δ-∑调制器的小型C语言程序产生。该调制器的输入为要求的载波信号;输出端的位流为PWM信号,这个位流必须储存在移位寄存器中。
AMC1210将提取寄存器中的可编程数据位并将其输出到环路中,这样就产生了连续的载波信号。例如,当系统时钟为30.016MHz、控制环路运行于8kHz时,每个控制环路的时钟周期为3,752个。可以使用AMC1210的内置分频器能够降低系统时钟。如果选择降低4,则会占用938比特的PWM寄存器。
AMC1210拥有一个互补的PWM输出(PWM_P及PWM_N),其电流驱动能力最高可达100mA。这样就产生了全差分载波信号,其电压范围高达+/-5V(5V单电源),能够直接驱动旋转变压器。旋转变压器自身具有对PWM信号的低通滤波能力,所以旋转变压器的正弦及余弦绕组可以直接产生幅度整齐的调制正弦波。因为载波信号的谐波也落在滤波器传输函数的陷波频率上,故谐波的影响并不严重。