随着照明技术从极为耗电的白炽灯转为冷阴极荧光灯(CCFL),再发展到现在的发光二极管(LED)灯,可以很清楚地看到在最终用户愿意为更绿色的照明支付更高成本的同时,他们也有一个内在的期望即寿命更长和更高的可靠性,这才将是他们投资的净效益。
在满足这些期望时,LED设计工程师们必须考虑到影响产品性能和寿命的各种不同的变化因素。从电源管理到功率密度,再到过压和过温保护,LED技术的独特性带来了较陈旧的与技术不相干的各种新挑战。
凭借改善的芯片设计和材料,LED技术已经快速向前发展,促使其向更亮、更高效节能、寿命更持久的光源快速发展,并能够在一个更大的范围内应用。尽管技术日益普及,但仍然有一个事实,即过多的热量和不恰当的应用能够显著的影响LED寿命和性能。
高亮度LED(HB LED)是节能、高性价比的设备,能够确保下一代的照明解决方案。从建筑照明到汽车照明到各种显示设备的背光和新型消费电子(如照相手机中的闪光灯),HB LED照明的应用将持续增长。
HB LED照明系统中的过流情况
LED光输出随芯片类型、封装、每个晶圆批次的效率和其它变量而变化。LED制造商使用如高亮度这样的术语来形容LED的密度。HB LED驱动器可由线性或者开关电源供电。当电源电压略微大于负载电压时,线性驱动器是最合适的,电阻会用于限制其电流。开关电源亦会经常使用,因为它们更高效。
通常,电流感应电阻器为电流调节控制器提供了反馈,以监控供应给HB LED的电流。另一个可选的解决方案就是使用聚合物正温度系数(PPTC)器件来限制流过LED的电流。
图1、典型的用于HB LED照明的电流保护设计
如图1所示,一个PPTC器件是一个电路中的一系列要素之一。通常PPTC器件的电阻小于电路的其余部分,很少或者不会对正常的电路性能造成影响。然而,一旦发生一次过流的情况,该器件会增加电阻(跳闸),并且将电路中的电流降低到一个任何电路单元都能够安全承载的电流值。这种变化由I2R发热原理带来的器件温度迅速升高而引起。
器件会一直保持其跳闸或者闩锁状态直到故障被排除。一旦连接到电路的电源重新闭合后,PPTC器件会复位并允许电流重新开始流动,使电路恢复正常工作。当PPTC器件不能够阻止一次故障发生时,它们会迅速做出反应,将电流限制到一个安全的等级以帮助防止对下游器件随之而来的损坏。此外,它们的小型化外形使得它们易于在空间受限的应用中使用。
HB LED照明的过温保护
与传统照明不同,由于HB LED是极其热敏感,其热管理是一个重要的设计考虑因素。为了提高可靠性与工作寿命, PN结不能够达到导通温度。由于PPTC器件采用的是热激活,因此器件周围温度的任何变化都会影响其性能。随着器件周围的温度增加,更少的能量就要求器件跳闸,因此其能够钳住并降低电流值。
PPTC器件的工作原理
PPTC电路保护器件采用半晶体状聚合物与导电性颗粒复合制成。在正常温度下,这些导电性颗粒在聚合物内构成了低电阻的网络结构。但是,如果温度上升到器件的切换温度(Tsw)时,无论这种状况是由大电流造成的还是由于环境温度的上升造成,聚合物内的晶体物质都将会融化并成为无定形物质。在晶体相融化阶段出现的体积增大会导致导电性颗粒在液力作用下分隔,并使器件的电阻值出现巨大的非线性增长,如图2所示。
图2、PPTC器件保护电路为响应过流或过温情况,从低电阻状态转到高电阻状态
典型情况下,电阻值将增加3个或者更多的数量级。电阻值增加后能够将故障条件下流经的电流数量降低到一个较低的稳态水平,从而保护电路内的设备。在故障排除以及电路电源断开之前,PPTC器件将保持在闩锁(高阻值)状态;而在导电性复合材料冷却下来并重新结晶后,PPTC器件将重新恢复低阻值状态。