从 2005 年开始使用的开放式框架 AC/DC 电源100 瓦 (101x51mm)
进一步提高开关电源能效等级的方法
目前,用于开关电源的变电装置主要通过谐振开关 FET 提供输入电压。这些组件价格低廉,由于在零电压或零电流点接通或关断,它们的损耗率也非常低,因而非常适合 800 瓦左右电源的需要。如今,100 瓦以上开关电源的输入端经常使用升压转换器,其功率因数(超过 95%)明显高于仅使用整流器时的功率因数。此电路组件中必须集成附加电感。为使其保持尽量小的体积,不能简单地在无电流或无电压状态下接通或关断关联的高频断路器。对于这种情形,使用创新的极速切换半导体开关断路器便非常适合。尤其是,这种开关元件使用了基于砷化镓 (GaAs) 或碳化硅 (SiC) 材料的半导体。这些开关元件的传输频率大约是传统硅半导体的十倍。这与接通和关断时的传输过程(切换过程)显著加快有关。与硅 MOSFETS 相比,这些开关元件仍然非常昂贵,但它们的价格正在下降,这对开关电源的价格和性能的进一步发展有显著影响。
当前开关电源的拓扑结构
为了确保开关电源的输入端能够获得符合允许限值的高功率因数,性能在 100 瓦以上的现代开关电源通常采用两级设计。转换器产生预先调节的直流电,它采用调节方式可使该转换器的输入电流接近正弦。第二个转换器通常设计为谐振转换器,它将电压转换到较低的水平,并将输入电压与输出电压分离。进一步的发展开关电源将不断缩小至更合适的尺寸,功率密度也将不断增加,尽管无法再现过去 10 至 20 年间的发展速度。
与过去相比,限制因素更多在于以余热形式释放的功率损耗,随着尺寸的不断缩小,释放的难度也将越来越大。
从 2015 年开始使用的开放式框架 AC/DC 开关电源100 瓦 (76x51mm)
建议
建议用户将开关电源的性能数据(特别是功率损耗信息)与声明的设计数值进行关联和比较。为了确保应用的可靠性,对于明显的差异,应始终秉持质疑态度并要求澄清。“小即美”的观念只适用于运行过程中产生的功率损失也相对小的情况!
(敬请关注微信订阅号:dzbyqzx)