1.3、相关上市公司2020已开始业绩加速
AI相关上市公司Q3已呈明显加速迹象。经历了近三年人工智能行业的“遇冷”时期,AI已经初步显现正常回温现象。根据2017年Gartner曲线,人工智能从触发期开始,会经过期望膨胀期—泡沫幻灭期—复苏期—成熟期。从目前趋势来看,AI行业、经过两年的预期消化,已不再是追逐热点赛道,而更倾向于考虑打造合理的商业模式,帮助人工智能产业化落地。2017-2020年期间,在预期消化的同时,在资本的助力、政策的驱动、技术的投入下,人工智能领域中数据、硬件、算法都发生了巨大飞跃,成为了人工智能拐点的催化剂,推动业务的飞跃发展。
从AI相关的上市公司的财报中可以明显看出,AI产业已经出现明显拐点信号,已进入了短期最后的负面因素兑现期。从三季报看,语音识别和图像理解领域的科大讯飞、图形图像视觉算法领域的虹软科技、AI+视频在安防领域的龙头海康威视在2020Q3的营收均高于Q2,智能操作系统领域的中科创达的营收增长更是持续维持在高位。
1.4、AI天然带来规模优势
AI技术边际成本极低,本身自带规模优势。与所有软件类似的,AI运用的边际成本极低,故而以人工智能替代人力必定具有规模效应,可以显著降本增效。例如平安开发的智能客服机器人,目前已经广泛应用于平安银行,具备语义分析能力与自主学习能力,能够不断扩充知识库,代替人力自动完成了解产品、注册用户、申请服务、提交材料等大量前端常规业务流程。根据官网数据,平安智能客服机器人问题识别率高达95%,可以提升客服效率88%,提升订单转化率35%。截止2019年,平安智能语音机器人已覆盖集团83%的金融销售场景、81%的客服场景,全年累计服务量达8.5亿次,可实现每年坐席成本下降11%。
海量数据是AI必不可少的训练素材与基础条件。随着机器视觉、语音识别等技术的发展,海量的非结构化数据进一步增加。一方面庞大的数据超越人力处理的极限,另一方面海量数据也是训练机器学习算法的基础。对于AI来说,想要进行机器学习,首先必须要有学习的原材料,即海量数据。在缺乏数据的情况下,AI想要发展得好,便有如巧妇难为无米之炊。
拥有更多数据积累与行业Know-how积累的头部厂商能够获得更好的AI 训练结果。1)许多行业具有复杂的碎片化应用场景,不同场景下的行业Know-how实质上构成专业壁垒。头部大厂往往有较为庞大的产品及平台团队,能够针对碎片化的需求,开发出成千上万针对不同场景的产品和系统并不断迭代,适合搭载AI实现细分领域的智能化。2)由于海量数据是AI自我迭代不可或缺的基础,拥有更多数据积累的头部厂商将获得更好的AI训练结果,并从AI赋能中率先获益。例如,中国平安在音频方面拥有大量积累,95511客服以每天服务客户96万次,年接触客户3.5亿次的速度累积了上亿条声音的庞大数据库,作为日后声纹识别训练的样本库,最终助力平安的声纹识别技术实现1秒内高达99.7%的精准度。再譬如全球安防龙头海康威视,具备庞大的设备存量与数据积累,因此可以基于深度学习技术推出了AI智能摄像机等一系列智慧监控产品:它们可以支持人脸识别、人员行为分析、人体属性分析、人脸动态对比等多种智能检测,通过不断的机器学习和自我迭代,具备比人脑更精准的安防大数据归纳能力。
(敬请关注微信订阅号:dzbyqzx)