
图2:如图1中48A、1.5V电路的热像,在各DC/DCμModule之间实现了平衡的功率均分以及低的温升,即使没有气流也不例外(VIN=20V至1.5VOUT/40A)。

图3:具200LFM从底部至顶部气流的4个并联LTM4601的热像(20VIN至1.5VOUT/40A)。

图4:在环境温度为50oC并具有400LFM从右至左气流的容器中,4个并联LTM4601的热像(12VIN/至1.0VOUT/40A)

图5:在环境温度为75oC并具有400LFM从右至左气流的容器中,当采用BGA散热器时,4个并联LTM4601的热像(12VIN至1.0VOUT/40A)
你的系统有多环保?
这里是另一个需要高达15A的大负载电流的3.3Vin系统的例子。LTM4611采用耐热增强型LGA(焊盘网格阵列)封装,以小的焊盘格局(仅为15mmx15mm)和小的物理体积(高度仅为4.32mm,占用空间仅为1立方厘米)提供了富有吸引力的高效率。图6显示了LTM4611在各种不同的输入和输出电压组合情况下的效率。除了高效率,就给定输入电压条件而言,LTM4611的功率损耗曲线也相对平坦,这使LTM4611在后续产品中的热设计和重用变得容易了,即使由于IC芯片缩小,轨电压变为更低值时也一样。
面对应用数量的日益增加,降低轻负载时的功耗与降低重负载时的功耗相比,如果不是更重要,起码也是一样重要。只要可能而且无论何时只要现实(就节能而言),数字设备就被有意设计为在较低功率状态工作,而且仅间歇性地吸取峰值功率(满负载),这种情况越来越普遍。图6显示,在较轻负载电流(<3A)时以PSM和突发模式工作,效率上可获得的好处。

图6:超低VIN15ADC/DC微型模块稳压器LTM4611的效率
耐热增强型封装
该器件的LGA封装允许同时从顶部和底部散热,从而为使用金属底盘或BGA散热器提供了方便。这种外形在有或没有气流时,都有助于实现卓越的散热。图7显示了LTM4611顶部的红外(IR)热像,在实验台上进行测试且没有气流时,显示功率损耗为3.5W,并将5V输入转换为1.5V/15A输出。最热的表面温度约为65°C。

图7:LTM4611稳压器从5Vin至1.5V/15A输出的顶部热像。功耗为3.5W。在实验台上进行且没有气流时的测试结果,表面温度热点为65°C。
与图7对比,图8显示了另一个LTM4611顶部的IR热像,在实验台上进行测试且没有气流时,显示功率损耗仅为3.2W,并将1.8V输入转换为1.5V/15A输出。热点位置(而不是热点大小)与用5V输入工作时看到的位置略有变化。

图8:1.8VIN、1.5VOUT/15A输出负载、3.2W功率损耗、气流为0LFM、表面温度为65oC时的技术视频(URL:http://video.linear.com.cn/55)