在考虑使用LED驱动器将AC输入电压转换为用于LED负载的恒定电流源的拓扑时,将LED应用分为三种功率水平是有帮助的:(1)低功率应用。要求输入低于20W,例如灯条、R灯和白炽灯的替换品;(2)中等功率应用。输入最高为50W,例如天花板筒灯和L灯;(3)高功率应用。要求输入高于50W,例如标牌灯或街灯。设计人员在这三种功率范围内面对不同的挑战组合,包括成本、安装LED驱动器的空间、效率、设计复杂性、功率因数、平均失效时间(mean-time-to-failure, MTTF)以及可靠性,上述只是诸多挑战中的一些。本文将推荐在这三种基本功率范围内使用的基本拓扑以应对设计挑战。
低功率解决方案面向小尺寸照明灯应用,这些应用要求安装LED驱动器的设计体积小,通过控制流过LED的电流来达到稳定的光辐射,并具有高效率和低成本。为了符合“能源之星(Energy Star)”对于照明器具的规划要求,对于住宅灯具的功率因数必须≥0.7,并且对于输入功率大于5W的商业应用,功率因数必须≥ 0.9。
(1)如果不需要LED驱动器隔离,降压调节器拓扑具有最低的BOM成本,因而是可以考虑的低成本解决方案。图1为非隔离降压拓扑示例,包括了功率因数校正和调光能力,仅有一个磁性元件(一个简单电感)和一个单一MOSFET/二极管对,用于降压功率转换。如果输入电压高于LED负载所需的输出电压,此拓扑为最佳选择。
图1 带有PFC的非隔离降压转换器
在需要隔离LED驱动器时,一个好的拓扑选择就是初级端调节(primary-side regulated,PSR)反激拓扑;图2是一个PSR反激LED驱动器示例。无需次级端反馈,可以降低成本,因而此拓扑的元件数目较少,可以实现良好的恒定电流调节。控制器中可以集成MOSFET以减少BOM数目及减少印刷线路板空间。因无需使用用于次级反馈的光隔离器PSR反激的可靠性得以提高。
图2 初级端调节转换器
对于PSR反激拓扑,不连续导通模式(Discontinuous Conduction Mode,DCM)是首选的工作模式,因为它可以更好地调节输出。典型波形如图3所示。
图3 DCM反激转换器波形
当PSR LED驱动器以恒定电压调节模式工作时,在电感器电流放电时间Tdis期间,输出电压和二极管正向电压降之和被反映至辅助线圈端。因为二极管正向电压降随着通过二极管的输出电流减少而减少,在二极管放电时间Tdis的末端,辅助线圈电压反映了输出电压。通过在二极管放电时间末端对辅助线圈电压进行采样,获得输出电压的信息。
当以恒定电流调节模式工作时,使用峰值漏极电流IPEAK和电感电流放电时间Tdis可以估算输出电流,因为在稳定状态下输出电流与二极管电流的平均值相同。采用飞兆半导体创新的TRUECURRENT?技术,可以精确控制恒定电流输出。
PSR拓扑的效率可以达到85%。作为一个例子,考虑8.4W的应用,LED驱动器的总功率损耗在85VAC输入时测得为1.32W。损耗的支出,最大来自于变压器,估计为0.55W,随后是缓冲电路(如图2所示,二极管与并联的电阻和电容串联,跨接在变压器初级线圈上),其损耗为0.31W,MOSFET的损耗为0.26W,以及输出整流和桥式整流器一起的0.20W损耗。