其基本原理如图:首先工频交流信号经电力电子变换器变换为高频方波信号,信号通过高频隔离变压器传输,再经电力电子变换器将高频方波信号还原成工频交流信号。该过程可以通过控制器对电力电子变换装置进行适当的控制来完成。
由固态变压器的基本原理,可以看出其相对于传统变压器的优点:
(1)采用了高频变压器,而非工频变压器,因此变压器的体积和重量都大大减小。
(2)通过适当的控制,可以实现输入侧单位功率因数运行,可以吸收负载侧无功功率和隔离谐波电流,抑制谐波双向流动,有效改善电能质量。
(3)可以消除电源侧电压过压或欠压对负载侧电压的影响,保证负载侧电压幅值、频率、波形的稳定。
(4)含有交直流接口,方便分布式发电系统的联网和直流负载的接入。
(5)全数字化控制,方便采集电网信息和联网通信,从而能够实现潮流控制,还可与柔性交流输电协同工作,增强电网系统的稳定性和可靠性。
可见,固态变压器比传统电力变压器更能够满足智能电网的要求,且更能满足用户对电网的个性化需求。
固态变压器典型拓扑及控制方式高频耦合的AC/AC电路
上世纪七十年代,美国GE公司的W.McMurray提出一种基于高频藕合的AC/AC电路结构,变换电路如图1-1所示4。
电路工作的基本原理为:采用移相控制的方式,原方开关S1和s2互补导通,工作在高频状态,输入的低频交流或直流信号被逆变为高频信号,经高频变压器祸合到副方,副方开关S3和S4通断与S1和S2同步,触发相位上相差角度,控制移相角即可控制变换器输出电压幅值。当移相角等于0时,变换后的副方电压波形与原方电压相同;当移相角不等于0时,输出电压波形呈现一定规律的正弦变化,在变压器副方配置输出滤波,方可得到正弦波形的电压。作为现代电力电子变压器的早期雏形,该设计思想也是后期固态变压器发展的基础。
三级结构的固态变压器
20世纪末,出现了一种针对电力电子变压器的三级结构,由Runan和Sudnoff两人提出,该变压器由高压级(输入级)、隔离级和低压级(输出级)构成。这是固态变压器领域首次尝试三级结构拓扑,受制于当时的功率器件耐压水平,高压侧多采用多个模块串联分压,各级模块内部相互独立。输入级模块为整流器,可实现单位功率因数,该级将输入的交流变换为直流;隔离级将直流信号经过直一交一直变换后还原为直流,隔离级的输出直流并联后送入输出级,输出级将直流逆变为所需工频交流后输出。此种结构较好地满足了降压变原方高电压小电流和副方低电压大电流的要求。但该固态变压器的局限性在于其只能实现功率的单向流动,且对无功的调整不够灵活。
固态变压器的应用
随着实际生产中对电能质量的要求越来越高,传统的电能质量补偿装置(如静止同步补偿器、动态电压恢复器、有源电力滤波器和综合电能质量调节器等)功能较为单一,若为满足全部电能要求逐个安装,成本高,效率低,加之传统变压器及其配套监控,整个系统复杂性提高,不利于电能质量的控制。SST具备解决这一问题的高性价比,因其本身具备无功补偿的功能,可灵活应对电压上升、电压闪变、电压谐波、电压跌落及三相输出电压不平衡等工况,并具备极短时间关断故障电流的能力,兼顾了断路器功能。除电力系统外,若对电能变换装置的重量和体积有特殊要求,如化工、航空、军事、医疗、航海等领域,SST亦将拥有实际的应用前景5。
SST具备原副方电压电流实时控制,灵活调节的能力,功率可双向流动,交直流均有,对分布式电源有很强的兼容性。通过SST本身的监测控制功能和一定的通讯功能,可协调控制多台SST控制新能源微网内的功率流动,提高能源利用效率,同时可适时地将微网接入大电网,必要时提供电压和频率支撑,无需额外增加调压和调频设备。因此,风电、太阳能、蓄电池这类电源可利用SST进行整合,实现多元化能源集中控制。现代电网自动化程度较高,辅助以人工智能,将推进电网智能化建设,基于固态变压器的控制即为一种智能型体现。在电力系统发生严重故障,甚至崩溃解列的情况下,SST切换于不同模式,先满足当地负载的用电需求,待系统恢复供电,正常运行时又可将负载转移至大电网,即所谓的黑启动:在没有外部辅助电源的情况下,逐步恢复对负载侧的正常供电。当然这需要建立在SST完善的控制模式基础上,即微网并网情况下的负载运行模式和孤岛运行模式。
现阶段SST除用于新能源智能微网领域,在传统电网中,主要用于解决配电网的电压扰动问题。常规的解决办法是采用动态电压恢复器,其工作原理是通过一个隔离变压器和可调自藕变压器产生一个补偿电压输送至电力系统。但变换效率不高,响应速度慢,变压器成本高,体积大。固态变压器则不存在上述问题,因其二次侧输出电压可调且能维持恒定,而且变换效率高,体积小,足够满足敏感负荷的电能要求。又因SST具备直流接口,可将蓄电池或超级电容接入,利用蓄电池的充放电特性和超级电容吸收释放电能的原理,来应对瞬时电压中断,提高供电可靠性。