
图 4. 电感器饱和与温度。
图4左上图显示了在饱和点以下工作的电感器,具有正常的三角电流波形,可由(V/L×Δt)算出。在峰值电流保持相同且温度升至50℃(右上图)时,电感电流斜率开始增至1.76A标记附近,指示显示电感器的饱和点随着温度上升而向下移动。当温度升到70℃, 然后升到85℃时,随着电感器达到饱和整个电流波形最终出现。
估算电感温度(热阻抗)
各种因素都会促使电感器的温度上升。这些因素包括环境温度、电感器的热阻抗和电感器的内部功耗。利用电感器的直流电阻随温度变化这一特性,我们可以比较准确地估算电感器的工作温度。这类似于使用ESD二极管或PFET导通电阻,在此将电感线圈用作内部温度计。
返回到我们的电感器电阻与温度对比的等式中去,通过两个温度下电感器电阻的比率可以用下面的等式算出ΔT:

图5中所示的测试示例在LM3554的电路中使用了VLS4010ST-2R2,直流电流阶跃为1.65A。室温时的电阻开始时为65mΩ。超过30秒之后,电感器达到稳态,电阻变为73mΩ,相应的稳态工作温度大约为 56℃。

图 5. 电感器热响应。
使用热阻(RT)的定义,可以获得:

这里要注意的一件事情是电感器的功耗是其线圈电阻的函数,后者会随着温度发生变化。因此,需要考虑计算电感器在给定RT的TF。将RT的等式插入电感电阻与温度等式并求解TF可以得出:

其中k为。

图5显示等效的电感温度上升与时间大约具有一阶指数关系。这再次得出等式:
