图2 完整的打印机AC适配器电路图
在满载且最小电压供电单周期情况下,为了维持变压器初级侧线圈上足够的电压,输入解耦电容器的容值必须足够高。在90V/50Hz AC线供电下,为了维持变压器初级线圈所需的最小77V的电压, 建议用139 F电容值。 因此在此设计中选择最接近标准的值: 150 F。
设计变压器的过程并不简单。首先要决定所需的匝数比。它的上限和下限由建议采用的功率MOSFET晶体管的最大漏源电压 (VDS)和次级整流二极管的反向电压限决定。功率 MOSFET要承受由于变压器漏感产生的电压尖峰,它在磁芯消磁开始时加到输入峰值上(265V 交流供电时峰值输入电压为373V)。 尖峰电压的幅值随着漏感及变压器输出的增加而增加,它确定了匝数比的上限。次级整流二极管的反向承受电压决定匝数比的下限。针对600V VDS 功率 MOSFET 和 100V VR 二次整流器二极管的选择,匝数比的上、下限分别为 5.22和 4.66, 因此选择匝数比为 5 。
变压器的初级侧线圈电感由最小输入电压下所达到的最大输出功率决定。在这样的前提下,适配器必须在接近最大频率和峰值电流的情况下工作,这意味着 TEA1532要在消磁后第一个振荡谷底处开启功率 MOSFET。为了计算所需的初级侧线圈电感,就必须确定振荡周期,它由 T-on + T-off + T-osc构成,详见图3。
图3 首个谷底开关条件(最小输入电压、最大输出负载)
由于 TEA1532在这些条件下的谷底检测的频率上限为700KHz,所以决定在功率MOSFET漏极上加一电容,使之与变压器初级侧线圈电感在450 KHz谐振。这样不仅提供了充足的设计余量而且限制了漏极上的 dV/dt 。 T-osc 因而设置在 1.11 s。最大的T-on由最大开关频率的最小值(50KHz)下的最大占空比决定,而最大占空比由匝数比(5)、初级侧线圈上的最小直流电压 (77V)、 输出电压 (20V) 和次级整流二极管的正向电压降(0.5V)决定。 在以上情况下,最大占空比为 0.57,对应的最大 T-on 时间为 10.7 s。
初级侧线圈电感要求在 57 KHz 时传送的最大功率为98W (标称90W 输出加损耗) ,计算得到电感197 H 和对应峰值电流4.15A。 从变压器磁芯参数可计算出初级侧线圈匝数 ( 磁芯Bmax = 220 mT 和 Ae = 109 mm2时为35匝)。 匝数比再决定次级线圈所需的匝数量。
一旦以上的参数确定之后,余下的大部分设计就相对比较简单了。通过最初计算出的初级侧线圈峰值电流可以决定电流感测电阻器的值。 变压器次级线圈上的伏特/匝可用于确定辅助线圈(为 TEA1532 提供最小值为13V Vcc 的供电)的匝数。 峰值钳位二极管 (D105)的选择主要有四个方面考虑:反向额定电压等于或高于MOSFET的VDS值,额定电流高于初级侧线圈峰值电流 ,具有非常低的正向恢复电压和短的反向恢复时间。还要检查漏-源电容 (MOSFET电容加外部谐振电容器)值,使MOSFET 关闭时的转换率(dV/dt) 限定在一个安全值 (只要次级输出电压的峰值低于100V,次级整流二极管就可以选肖特基二极管,因为其低的正向压降能使功率损失降到最低。选择次级平滑电容器以满足输出纹波电流要求,而且额定电压必须高于适配器出现开环故障情况下出现的电压。
此AC 适配器符合各项性能指标,其中包括在60 W 输出时转换效率在80%以上并且功率器件所需的散热器体积极小。