忽略换流过程和电流脉动的影响,整流电路交流侧输入电流in的第n次谐波电流的幅值Inm可表示为Inm=Ilm,式中:n=2k±l(k=l,2,3…);Ilm为基波电流幅值,于是交流侧电流in可表示为
而直流侧的谐波次数是n倍。所以,整流电路直流侧高次谐波电流不仅使电路产生畸变功率,增加电路的无功功率,而且高频谐波会沿着传输线路产生传导干扰和辐射干扰,危害电网安全。1.2 开关电路开关管负载为高频变压器初级线圈,是感性负载。在开关管导通瞬间,初级线圈产生很大的涌流,并在初级线圈的两端出现较高的浪涌尖峰电压;在开关管断开瞬间,由于初级线圈的漏磁通,致使一部分能量没有从一次线圈传输到二次线圈,储藏在电感中的这部分能量将和集电极电路中的电容、电阻形成带有尖峰的衰减震荡,叠加在关断电压上,形成关断电压尖峰。如果尖峰有足够高的幅度,那么很有可能把TOPwitch GX246Y内的开关管击穿。
1.3 高频变压器初次级之间分布电容引起的共模传导骚扰
高频变压器是开关电源中实现能量储存、隔离、输出、电压变换的重要部件,可惜的是它的漏感和分布电容对电路的电磁兼容性性能带来不可忽略的影响。漏感的影响在开关电路的电磁干扰问题上已经讨论。共模干扰是一种相对大地的干扰,所以不会通过变压器“电生磁和磁生电”的机理来传递,而必须通过变压器绕组间的耦合电容来传递。而在开关电源的高频变压器初次级之间存在着分布电容是个不争的事实。用一个装置电容(装置对地的分布电容)来与整个开关电源等效,就得到了如图2所示的干扰通道。
共模干扰通过变压器的耦合电容,经过装置电容再返回大地,就得到一个由变压器耦合电容与装置电容构成的分压器。共模电压就按照分压器中电容量的大小来分压,分到的电压为
式中:Z为绕组间的耦合阻抗;Z2为负载对地的等效阻抗;e1为初级干扰(共模电压);e2为次级干扰(共模电压)。
脉冲变压器初级线圈,开关管和滤波电容构成的高频开关电流环路可能会产生较大的空间辐射,形成辐射骚扰。
1.4 副边整流电路输出
开关电源工作时,副边整流电路的高速恢复二极管也处于高频通断状态。由高频变压器次级线圈、整流二极管和滤波电容也构成了高频开关电流的环路。因此,同样有可能对空间形成电磁辐射。
当二极管正向导通时,在P区和N区分别有少数载流子电子和空穴导电,当突然加反向电压时,储存电荷在反向电场作用下被复合,形成反向恢复电流,尽管电流非常小,但是这个转变过程非常短暂,因此,di/dt相当可观,就会在副边整流电路中形成高频衰减振荡。它会对外界形成差模辐射,甚至导致整流二极管被击穿。
2 电磁兼容性设计
开关电源存在着共模干扰和差模干扰两种电磁干扰形式,根据前面分析的电磁干扰源,结合它们的耦合途径,可以从EMI滤波器、吸收电路、接地和屏蔽等几个方面来抑制干扰,把电磁干扰衰减到允许限度之内。
2.1 采用交流输入EMT滤波器
采用适当的EMI滤波器,可以很有效地抑制交流电源输入端的低频段差模骚扰和高频段共模骚扰。在EMI滤波器(如图3所示)中,差模电容Cx用来短路差模噪声电流,而中间连线接地的共模电容Cy则用来短路共模噪声电流。共模扼流圈L(电感)是由两股等同并且按同方向绕制在一个磁芯上的线圈组成。当负载电流流过共模扼流圈时,串联在火线上的线圈所产生的磁力线和串联在零线上线圈所产生的磁力线方向相反,它们在磁芯中相互抵消。因此,即使在大负载电流的情况下,磁芯也不会饱和。而对于共模干扰电流,两个线圈产生的磁场是同方向的,会呈现较大电感,从而起到衰减共模干扰信号的作用。