Lmr上的电流一部分对S1的输出结电容Cr1充电,另一部分通过Tr耦合对S2的输出结电容Cr2放电。t2时刻,S2的漏源电压下降到零,该阶段结束。
3)阶段3〔t2~t3〕 当S2的漏源电压下降到零之后,S2的寄生二极管导通,将S2的漏源电压箝位在零电压状态,也就为S2的零电压导通创造了条件。同时Lmr两端被箝位在
4)阶段4〔t3~t4〕 t3时刻S2的门极变为高电平,S2零电压开通。流过寄生二极管的电流流经S2。Lmr两端依然承受式(3)所示电压V1,Lmr上电流线性下降到零然后反向增加。t4时刻,S2关断,该阶段结束。此时间段
5)阶段5〔t4~t5〕 t4时刻,Lmr上的电流方向为负,此电流一部分对S1的输出结电容Cr1放电,同时,另一部分通过Tr耦合到副边对S2的输出结电容Cr2充电。到t5时刻,S1的漏源电压下降到零,该阶段结束。
6)阶段6〔t5~t6〕 当S1的漏源电压下降到零之后,S1的寄生二极管导通,将S1的漏源电压箝位在零电压状态,为S1的零电压导通创造了条件。此时,Lmr上的反向电流流经主变压器,给流过二极管D的电流iD叠加上一个电流
7)阶段7〔t6~t7〕 t6时刻,S1的门极变为高电平,S1零电压开通。流过寄生二极管的电流流经S1。由于Lmr两端承受的电压V1此时较大,iLmr快速上升,到t7时刻,iLmr=iLm,主变压器耦合到副边的电流为零,二极管D自然关断。此时间段
接着Lmr与Lm串联承受输入电压,开始下一个周期。可以看到,在这种方案下,两个开关S1和S2零电压开通,二极管D零电流关断。
2 软开关的参数设计
假定电路工作在CCM状态。由于S2的软开关实现是iLmrmax对Cr1及Cr2充放电,而S1的软开关实现是iLmrmin对Cr1及Cr2充放电,在电路满载情况下,|iLmrmax|>>|iLmrmin|,而且S2的充电电压要大于放电电压(见图2波形vds2),因此,S1的软开关实现要比S2难得多。在参数设计中,关键是要考虑S1的软开关条件。
2.1 主变压器激磁电感Lm的设定
由于Lmr的存在,变换器的有效占空比Deff(根据激磁电感Lm的充放电时间定义,见图2)要小于S1的占空比D,但是,由于t4~t7时间内iLmr的上升速度非常快,所以,可近似认为Deff=D。这样,根据Flyback电路工作在CCM的条件
式中:η为变换器效率;