图3 FPA系统(效率和尺寸)
新一代SoC电源管理
APC(先进的电源管制器)靠动态或表态管理电源电压和漏电流,使SoC(系统芯片)能耗最佳化。采用两种技术:DVS(Danamic Voltage Scalling)和AVS(Adaptive Voltage Scalling)来管理SoC电源电压。APC适用两个软IP版本:APC1和APC2。APC1设计用于单SoC;APC2设计用更复杂SoC电源管理架构,支持个并行电压和时钟。APC2在内部共享电压域时具有控制多个独立时钟域的能力,这种能力特别重要,这可允许低功率工作。PWI2.0总线接口可使APC2连接到多个外设器件或另外SoC。图4示出采用APC2的双域SoC系统架构。SoC由两个主要逻辑单元(硬件加速器和CPU)组成。在每个电压域内有1个用于AVS控制的硬件性能监控器(HPM)。时钟管理单元为电压域和HPMs提供时钟信号。APC的4个主要功能单元示于APC2单元内。控制逻辑单元提供主接口(AMBA-APB)、CMU接口和中断管理服务。环路控制器管理AVS模式中的电压缩放。为DVS支持提供每个电压的频率—电压表。PWI2.0主机连接SoC到PMIC和其他外设。
图4 采用APC2的双域SoC系统架构
电源管理总线
电源管理总线PMBus为控制电源变换和管理器件规定了数字通信协议。采用PMBus,根据标准命令集可以配置、监控和操作电源变换器。用PMBus命令,设计师可以设置电源的工作参量、监控电源的工作和根据失效和报警执行正确的测量。
实现PMBus规范,要求电源和有关IC设计遵守其所要求的接口命令。SMBus提供主计算机或系统管理器与PMBus依从器件之间的串行通信(图5)。图5所示系统可以是:通用微控制器,ASIC,系统操作处理器,FPGA中的备用门,自动测试设备。PMBus器件可以是:Pol模块,PWM控制器IC,集成FET DC-DC变换器,砖式隔离DC-DC变换器,AC-DC变换器。
PMBus协议允许多源电源管理产品。通过标准命令集OEM能够控制PMBus依从的电源变换器。PMBus规范有两部分:Part1包括通用要求,这部分也规定了硬件信号传输和电气接口以及定时要求;Part Ⅱ规定了用在PMBus中命令语言。
为了遵守PMBus规范,器件必须满足下列条件:
器件必须满足PMBus规范PartI的所有要求;
器件至少支持由PMBus规范PartⅡ规定的一个非制造商专门命令;
若器件接受PMBus命令码,则它必须执行PMBus规范PartⅡ所描述的功能;
若器件不能接受给定的PMBus命令码,则它必须响应PMBus规范PartⅡ所描述的失效管理和报告;
根据电源应用,PMBus器件随着内部或外部编程必须在控制状态下起动和开始工作。
图5 PMBus Version 1.1可管理AC-DC和DC-DC电源
PMBus协议覆盖广泛的电源系统架构和变换器。协议包括编程电源变换器件失效或报警的能力。对于失效条件,可以编程PMBus器件以立即判断,闭锁和重试或关机前继续工作一特定延迟时间来做出响应。
PMBus与Power-One的Z-One架构(图6)的主要差别是分配电源管理任务的方法不同。Z-One分开固件使能DPM(数字电源管理器和Pol基DPWM(数字脉宽调制器)IC之间的电源管理任务。PMBus要求设计师根据PMBus协议编程计算机,其中很多信息存在系统控制器中。它们之间的另一个差别是Z-One系统仅仅适合DC-DC变换器工作,而PMBus适合DC-DC和AC-DC变换器。