导磁率:导磁率的定义是m=B/m0H,是磁化曲线(见材料的静态磁化)上任意一点上B和H的比值。导磁率实际上代表了磁性材料被磁化的容易程度,或者说是材料对外部磁场的灵敏程度。
磁性材料的静态磁化及常用性能指针:
我们已经知道,磁性材料内部具有磁畴,它们就好像众多的小磁铁混乱地堆积,整体对外没有磁性。这时我们称材料处于磁中性状态。但是,如果材料处在外加磁场的环境中,那么这些小磁铁(实际上是磁畴的磁矩)就会和磁场发生相互作用,其结果就是材料中的磁矩发生向外加磁场方向的转动,导致这些磁矩不再能相互抵消,也就是说所有磁矩的矢量和不等于零。在外加磁场的作用下,磁性材料由磁中性状态变成对外显示磁矩状态的过程称为磁化。
那么磁性材料在磁化过程中到底发生了哪些变化呢?
在磁中性状态(即没有外加磁场),材料内部的磁矩成混乱排列,总的磁矩为零,因此材料显示的磁化强度也是零。
当磁性材料处于外加磁场中时,材料内部的磁矩就会受到磁场的作用力,磁矩会向外磁场的方向转动,就像磁铁在磁场中转动一样。这时,磁矩就不再是完全混乱排列的了,而是沿外磁场方向产生了一个总的磁化强度,这时我们说材料被磁化了。并且,外磁场越大,材料内部的磁矩向外磁场方向转动的数量和程度就越多。当外磁场足够大时,材料内部所有的磁矩都会沿外磁场方向整齐排列,这时材料对外显示的磁化强度达到最大值,我们说材料被磁化到了饱和。达到饱和之后,无论怎样增大磁场,材料的磁化强度也不再增大。因此材料被磁化到饱和时的磁化强度称为饱和磁化强度,用Ms来表示。
从上面的分析,我们知道材料的磁化强度随外磁场而变化。在科学实验和生产实际中,常把磁场和磁化强度的关系画成曲线,称为磁化曲线,如图所示。其中,横坐标表示外磁场的大小,纵坐标表示磁化强度的高低。磁化曲线一般可以分成三个阶段:可逆磁化阶段、不可逆磁化阶段、饱和阶段。
在工程上,一般不用磁化强度-磁场的关系画磁化曲线,而用磁感应强度-磁场的关系画磁化曲线。这时,磁化饱和时就有一个饱和磁感应强度(或者饱和磁通密度),用Bs表示。以后,如果没有特殊说明,我们都用的是B-H磁化曲线。饱和磁感应强度是磁性材料的一个重要指标。
在磁化曲线上,每一点都有一个磁感应强度和磁场的比值,称为导磁率。在磁化的不同阶段,材料的导磁率也不同,导磁率在最高点称为最大导磁率。在磁化起始点的导磁率称为初始导磁率。导磁率是软磁材料的另一个非常重要的指标。
那么,在磁化过程中,材料内部的磁矩究竟是怎样转动的?有两种方式使材料的磁矩产生转动:一是畴壁位移:材料磁化时,畴壁内部的原子磁矩逐渐转向外磁场的方向,畴壁逐渐推移,这样,与外磁场方向接近的磁畴面积逐渐扩大,而与外磁场方向相反的磁畴逐渐缩小。这种方式一般发生在非饱和阶段。二是磁矩一致转动:在外磁场的作用下,与外磁场方向相反的磁畴中的磁矩向外磁场方向整体转动,就像磁铁转动一样。这种方式主要发生在接近饱和阶段。
磁性材料的反磁化过程:
现在,让我们假设把磁性材料逐步磁化,随着磁场的增大,磁感应强度也增加,一直到饱和。整个磁化过程可以用图中的曲线O-a-b-c表示。
然后逐步减小外磁场,材料会发生什么情况?不难想象,外磁场减小,肯定会使材料的磁感降低,但有趣的是,磁感并不沿c-b-a原路返回,而是沿曲线c-d-e降低。也就是说,在从饱和点减小外磁场时,相应的磁感要高于初始磁化时的磁感,似乎是磁感的减小比磁场的降低「落后」或者「滞后」了。磁性材料的这种特性称为磁滞现象。磁滞现象是磁性材料的一个极其重要的特征。
由于磁滞现象,如果磁性材料从饱和点撤掉外磁场,也就是说使外磁场返回到零,那么材料的磁感不能同时降低到零,而是仍然存在一部分磁感Br,称为剩余磁感应强度,简称剩磁。之所以存在剩磁现象,是因为外磁场减小后,材料内部的磁矩不能完全转回原来的方向,而是由于种种阻力会停留在先前的某个方向。这就是所谓的不可逆磁化。只有在极低的磁场中材料才可能发生完全的可逆磁化,一般情况下的磁化都不是完全可逆的。
那么,如果现在有意地想让磁感返回到零,应该任何做呢?可以推断,应该对材料施加反向磁场。不错,施加反向磁场,磁感就会进一步降低,并且在某个特征磁场Hc处磁感恰好为零,这个磁场称为矫顽力。如果继续增大反向磁场,磁感则也会反向,并且随着反向磁场的增大而逐渐趋向反向饱和g点。同样,从g点逐渐降低反向磁场,磁感会沿曲线g-h-i饱和,最后又到达正向饱和c点。