降压转换器的直流输出电压由Vout=D×Vin所确定。其中,D是L2输入提供的矩形波的占空比(MOSFET导通时间除以总开关周期T);Vin是提供给降压开关电路的直流电压。对于120Vac额定输入和12Vac输出而言,我们能够轻松地计算出内部MOSFET开关的所需占空比D。
D=Vout/(Vinac×1.4)=12/(120×1.4)=0.07
对100kHz的开关频率(T=10μs)而言,这个占空比非常小,相当于0.07×10μS=0.7μS的导通时间。这样短的导通时间实际上不比控制器的内部传播延迟长多少,并没给因负载改变的脉宽动态范围多少余量,且当负载电压降至使L2电流不连续时,自然会导致子开关(sub-switching)进入频率脉冲跳周期工作模式。这个模式工作也许可行,只要电源的输出纹波不是太高和/或电感中没有可听噪声。
在低占空比模式下,还需要提高主输出扼流圈L2的电感,以避免在最低额定输出负载时出现非连续导电模式(DCM) 。电感设计也与MOSFET的峰值-平均电流比有关。流经内部MOSFET U1的峰值电流是输出负载电流和L2的磁化电流之和。在额定线路条件(C3上165Vdc)下,开关周期末期的峰值磁化电流由E=L×dI/dt这个关系等式所确定。整理这个等式可得到:dI=(E×dt)/L。本例中的磁化电流就为:
dI=[(Vindc-Vout)×dt]/L=[(165-12)×0.7]/750μH=0.143A
峰值MOSFET电流将是:300mA(最大负载电流)+143mA=443mA
假定没有容限变化,NCP1014的额定规定过流脱扣(overcurrent trip)电平是450mA。因此,这里的问题就是我们怎样才能避免上述低占空比问题,并能使用相同的半导体器件,做最少的电路变更而从这个降压转换器获得尽可能大的输出电流。