图2. (a) 隔离DC-DC逆变器原理图 (b) 4通道隔离器、500 mW隔离电源下的封装方案
在本例中,变压器由两个独立的芯片构成,一个是编码器(即原边芯片),另一个是解码器(即副边芯片)。然而,这主要是出于成本原因考虑,而在理论上,变压器是可以用其中一个IC芯片构建的。栅极驱动器、收发器、ADC等额外电路功能全部都可以集成进来。
PV逆变器中的隔离集成
图3所示为一个典型的3级并网PV逆变器。第1级是一个可选的升压转换器,用于提高电池板电压,该电压然后再通过隔离DC-DC转换器级。该隔离DC-DC转换器包括一个通过高频变压器的全桥dc-ac转换功能。该高频变压器具有尺寸小、效率高的优势。副边的交流被整流成通常高于电网峰值电压的直流电压。整流形成的直流再通过第3逆变器级转换成电网线路频率。需要检测电池板输出电压和电流,并将其馈入一个微控制器,以执行最大功率传输跟踪(MPTT)算法。同时,该微控制器还负责控制隔离DC-DC和输出逆变器的栅极驱动器。输出逆变器位于电网一端,其接地电压与直流电池板接地电压不同,从微控制器到逆变器驱动级的通信需要隔离。通常需要四个光耦合器,但它们功耗较高,其较大的传播延迟也可能影响栅极驱动器的时序精度,从而影响到逆变器的效率,而且最重要的是,它们难以支持PV电池板20至25年的担保寿命。另一方面,基于微变压器的隔离器[1, 2]功耗要低得多,传播延迟要短得多,而且性能不会随时间而下降。另外,多通道隔离器也可以与片上DC-DC转换器集成,以便为栅极驱动器提供隔离电源。在逆变器输出与并网之间用继电器来确
保逆变器输出频率和相位与市电电压同步,同时,还能在电网发生故障时或者在市电电压或频率超过可接受限值时迅速断开,从而实现防孤岛保护。在电网一端需要电压检测功能以检测零交越,同时也需要电流检测功能,以确保负载中馈入的是正弦波电流。检测信息可以通过隔离ADC传送给控制器。隔离ADC集成一个16位二阶∑-△调制器和基于微变压器的数字隔离功能,能够实现3.75 kV的隔离,是分流电流检测的理想之选。电流变压器也可用于电流检测,但它们价格昂贵、体积庞大,而且可能对外部磁场非常敏感。也可以使用霍尔效应检测器,但它们在非线性度和失调方面先天不足,结果会影响到电流测量值的精度。分流与集成隔离ADC一起形成一种可靠的低成本替代方案。隔离ADC在电网一端也需要隔离电源以驱动自己,同时,可以集成基于微变压器的隔离DC-DC,从而省去使用分立式DC-DC转换器的诸多麻烦。当需要PLC通信时,电网端的PLC芯片可以由隔离DC-DC来驱动,而其与电池板一端的控制器的通信则通过一个多通道隔离器来实现。
图3. 3级PV逆变器的隔离方案
基于微变压器的隔离方法也可与高电流输出栅极驱动器相集成,以形成全隔离半桥栅极驱动器。图4所示为一个并网PV逆变器的示例栅极驱动方案。对于原边的DC-AC全桥开关,通常没有必要为低端栅极驱动器(尤其是低功耗逆变器)设置隔离。对于两个高端开关,具有4 A驱动能力的2通道1 kV隔离驱动器就能胜任工作。逆变器开关位于交流端,因此,低端和高端都需要隔离栅极驱动器。
图4. 3级PV逆变器的栅极驱动器实现方案
要使直流端的微控制器与交流端的逆变器直接通信,通常需要2.5 kV或5 kV隔离栅极驱动器。低端栅极驱动器可以由集成的DC-DC驱动(其动力来自电池板一端),而高端电源则可通过自举解决方案来提供。
每个半桥栅极驱动器均由3向隔离构成,即是说,输入与输出之间存在隔离,两个输出之间也有隔离。输入到输出的隔离通过片上变压器提供。图5(a)是1 kV栅极驱动器的变压器结构,图5(b)是5 kV栅极驱动器的变压器结构。1 kV半桥栅极驱动器以三芯片单封装实现,包括一个输入芯片和两个相同的栅极驱动器芯片。
两个1 kV变压器(如图5(a)所示)在输入芯片上实现,两个栅极驱动器输出各一个。输入与底部线圈相连,底部线圈与顶部线圈之间由2.64 μm厚的氧化物隔离,而顶部线圈相互之间则通过横向氧化物来实现隔离。这两个栅极驱动器芯片位于自己的分片焊盘上,并通过与[2]类似的芯片间焊线与输入芯片处的顶部线圈相连。5 kV栅极驱动器实现方法与此相似,只是顶部线圈与底部线圈之间是通过20 mm厚的聚酰亚胺材料进行隔离的。